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Understanding the human brain, with its remarkable ability to control higher thought, 

behavior, and memory, remains one of the greatest intellectual challenges in all of 

science. Recent advances in neuroimaging techniques, such as fMRI, have made it 

possible to measure neural activity in the human brain. However, fMRI data are not only 

massive in size but also spatially and temporally complex. In my thesis, I develop 

advanced data summarization techniques to study brain function and its link to behavior. 

While traditional fMRI studies have typically collapsed data across individuals and 

cognitive states, here, I develop personalized algorithms that can preserve individual and 

state differences. I establish that individual and state differences in brain maps (also 

known as parcellations) are reliable and functionally relevant, such that features extracted 

from these parcellations can successfully predict behavioral phenotypes of individuals as 

well as their brains’ cognitive states. In the first empirical chapter (Chapter 2), I propose 

a network-based predictive model which successfully predicts attentional abilities for 

novel individuals and generalizes across attention tasks and behavioral measures. In 

Chapter 3, I develop a submodular-based algorithm for individualized network-level 

brain functional parcellation and demonstrate that the brain networks are different across 



 

 

individuals, and show reliable sex-specific patterns which can be utilized to predict 

individual sex. In Chapter 4, I demonstrate that the functional networks are not only 

different across individuals, but also reliably vary across cognitive states, such that they 

form a predictive signature of the underlying cognitive state. In Chapter 5, I propose a 

new submodular-based algorithm for individualized node-level functional parcellation 

and show that compared to the group-level parcellation, the proposed individualized 

parcellations exhibit a stronger predictive power in predicting IQ, highlighting its ability 

in preserving behaviorally relevant information. In Chapter 6, I demonstrate that the 

individual functional parcellations are unique and reliable, such that they can act as an 

identifying 'fingerprint'. In the final empirical chapter (Chapter 7), I challenge one of the 

longstanding assumptions in the field by demonstrating that the individualized node-level 

functional parcellations are not fixed, but they reliably reconfigure with brain’s cognitive 

state. I demonstrate that a measure of node configuration as coarse as node size can 

significantly predict the task condition under which the data were acquired, as well as the 

within-condition task performance. The work presented here provides a theoretical and 

empirical foundation for future research seeking data-driven approaches to understanding 

brain function, and its relationship to behavior. 
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Chapter 1: Introduction 

 

 

 

The human brain is a complex network, consisting of functionally interconnected regions 

whose coordinated effort gives rise to different functions. Understanding what these 

regions are, how they interact, and how this interaction forms a wide range of behavior 

has long been an essential question for human neuroscience. 

Neuroimaging techniques have provided a unique opportunity to tackle this question 

in a data-driven way. Advances in neuroimaging techniques have allowed us to 

approximately measure the neural activity in the brain. Among all other techniques, 

functional Magnetic Resonance Imaging (fMRI) has received increased attention due to 

its unparalleled ability in providing a non-invasive whole-brain coverage of awake 

behaving humans. fMRI measures blood oxygen-level dependent (BOLD) signal as a 

proxy for neural activity. Although BOLD signals are far fr om a direct measure of the 

neural activity, studies have shown that the two are coupled (Logothetis, et al. 2001). The 

spatial resolution in fMRI is primarily determined by the volume of the smallest imaging 

unit, i.e., voxel. Current fMRI pulse sequences can offer spatial resolution of up to 1mm3 

and temporal resolution of 1 volume every second or less.  

The fMRI data are massive in size and complex in their spatio temporal patterns. In 

the past few years, with advances in the neuroimaging techniques and the increased 

attention on the publicly available data sets, the field has observed a proliferation of 
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neuroimaging data, understanding which requires advanced data analysis techniques. 

Understanding these data, with its all complexity is the first step towards understanding 

the brains. 

Submodularity is at the core of computational methods developed for big data 

analysis, due to its unique properties which allow for efficient data summarization 

algorithms. Submodularity, in brief, is a property of set functions (i.e., functions that are 

defined on a set of items) which refers to a natural diminishing returns condition, that is, 

the marginal value of adding an item to a set decreases as the set we possess increases. 

Because of this property, submodular functions can be efficiently optimized using 

scalable algorithms. Submodular functions are important, not just because they provide a 

unique opportunity for efficient optimization algorithms, but because they are a 

ubiquitous property of many real-world problems, thus making it a very natural 

assumption in many data analysis problems. Submodular function optimization 

algorithms have proven useful in a wide range of applications including viral marketing 

(Kempe, et al. 2003), outbreak detection (Leskovec, et al. 2007), sensor placement 

(Krause and Guestrin 2012), feature selection (Das, et al. 2012), and natural language 

processing (Lin and Bilmes 2011). Given this past success, submodular functions and 

submodular optimization form a great candidate for brain data analysis.  

For my doctoral thesis, I have developed submodularity-based optimization algorithms 

to intelligently summarize the brain data into informative neural signals. Unlike the 

traditional population-based brain studies which focus at group-level inferences, the 

proposed algorithms are able to capture meaningful individual differences, and state 

differences within an individual. I demonstrate that individual differences in brain 
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functional organization are meaningful and predictive of individual differences in 

behavior. The present work builds the theoretical and empirical foundation for future 

data-driven research seeking to characterize the brain function and its relationship to 

behavior. 

 

 Neuroscience background 

Human neuroscience research has long been interested in delineating the functional 

subunits in the brain and elucidate the functional role of these brain regions, through a 

technique known as human brain parcellation. These regions are often referred to as 

parcels, nodes, cortical areas, or regions of interest (RoI), in the community. Another line 

of research, known as functional connectivity, is interested in elucidating the interaction 

between these regions, by modeling the brain as a network of spatially distributed but 

functionally interconnected regions. In what follows I will provide an overview of these 

two well-established fields, and explain how the present work contributes to the advances 

of both. 

Perhaps one of the earliest attempts to human brain parcellation dates back to 1909 

when Korbinian Brodmann defined 52 regions based on cytoarchitecture (see Figure 1) 

(Brodmann 1909). Since then, there have been numerous attempts to identifying 

functionally meaningful regions based on different brain properties such as anatomy 

(Desikan, et al. 2006; Tzourio-Mazoyer, et al. 2002), microarchitecture (i.e., cyto-, 

myelo-, and chemo-architectonic features) (Henssen, et al. 2016; Nieuwenhuys, et al. 

2015b; Zilles and Palomero-Gallagher 2001), and more recently function (Craddock, et 

al. 2012; Thirion, et al. 2006; Thomas Yeo, et al. 2011a; Toga, et al. 2012). Depending on 
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the particular property considered, different brain atlases arise. Even within a particular 

property, different techniques and algorithms would lead to different brain atlases, and 

there has not yet been a consensus among neuroscientists on what is the best atlas for the 

human brain. Although no atlas has emerged as the dominant one to date, there is an 

assumption that such an atlas exists and the field has been trying to identify that by 

increasing the amount of data, using different modalities, and advancing the parcellation 

techniques. Identifying this atlas is a critical step towards understanding the brain. It 

forms the very initial step for many subsequent analyses, such as, functional connectivity 

studies and functional network parcellations (Sporns 2011).  
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Figure 1. Brodmann's cytotechtonic map. Brodmann’s areas, with regions marked according to 
their function. Reproduced from (OpenStax). 
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Functional connectivity research attempts to understand the interaction between brain 

regions by modeling the brain as a network. Nodes in this network are typically identified 

by a whole-brain atlas—for example, using a functional parcellation algorithm. Edge 

strengths are computed by measuring the synchrony of activity across these brain nodes. 

Synchrony can be defined by any statistical measure of similarity, with Pearson 

correlation being the most widely used measure in the field (Sporns 2011). Figure 2 

shows an illustration of the general pipeline for identifying the brain regions and 

constructing the functional connectivity matrix based on them, a well-established pipeline 

which has been widely employed in the community. 

Beyond the local connectivity patterns captured by edge strengths, global coordination 

patterns of brain network have also been of great interest to the field. Ample evidence 

suggests that the human brain has a modular functional organization (Sporns and Betzel 

2016), consisting of multiple spatially-distributed modules, which are referred to as 

networks or systems in the community (Figure 2d). Here, the term “network” is 

equivalent to the concept of “subnetwork” or “community” in graph theory. Previous 

work has consistently identified between 5 to 20 functional networks using resting-state 

fMRI data and a wide range of network-level  parcellation algorithms (Beckmann, et al. 

2005; Damoiseaux, et al. 2006; Dosenbach, et al. 2007; Fox, et al. 2006; Lee, et al. 2012; 

Meunier, et al. 2009; Power, et al. 2011; Smith, et al. 2009; Thomas Yeo, et al. 2011a). 

The spatial organization of these networks is shown to be in alignment with task 

activation patterns (Smith, et al. 2009). Functional networks support a wide range of 

cognitive functions (Dosenbach, et al. 2007; Laird, et al. 2011) and their alterations have 

been linked to a range of clinical disorders (Bush 2011; Stern, et al. 2012; Zhu, et al. 
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2012). See (Smitha, et al. 2017) for more review and discussion on the topic of network-

level parcellation. 
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Figure 2. Functional parcellation and connectivity pipeline. a) Human brain voxel-level data, 
consisting of b) A node-level functional atlas, defined based on a functional parcellation 
algorithm which groups voxels into nodes according to the synchrony of their timeseries. The 
temporal signal (timeseries) of a node is calculated by taking the average over all timeseries of 
voxels in that nodes. c) Functional connectivity matrix (𝑛	 × 	𝑛), defined by computing similarity 
of timeseries across all possible pairs of nodes (𝑛). Element (𝑖, 𝑗) in this matrix represents the 
similarity between node 𝑖 and node 𝑗’s timeseries, where similarity is typically defined by 
Pearson correlation. d) Delineation of functional networks according to the temporal synchrony 
of the nodes.  
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Traditionally, fMRI studies have taken a group-level direction by collapsing data from 

all individuals in a population to draw inferences about the general blueprints of the brain 

function. Although group-level models provide insight into the neural mechanisms of the 

brain, they typically ignore the large amount of inter-individual and inter-state variability 

in brain function. Considering the individual variability is particularly important for 

clinical practices where there is considerable heterogeneity in neural and behavioral 

phenotypes of individuals. Preserving and appreciating the individual differences is an 

important step towards discovering functional neuromarkers of psychiatric disorders—a 

potential application of fMRI which many have been hoping for.  

As such, recent fMRI studies have started moving towards individualized 

neuroscience with emphasis on behavior prediction. There have been numerous efforts in 

the past decade to characterize individual differences in connectivity patterns and link 

them to differences in behavior. A recent work form our group has shown that individual 

connectivity profiles are unique and reliable, acting as an identifying fingerprint (Finn, et 

al. 2015c). These connectivity patterns also predict individual differences in a wide range 

of cognitive traits such as intelligence (Finn, et al. 2015c), memory (Weber, et al. 2017), 

and attention (Rosenberg, et al. 2016d), or clinical symptoms such as Alzheimer’s 

Disease (Lin, et al. 2018), schizophrenia (Du, et al. 2016), autism (Price, et al. 2014), and 

depression (Barron, et al. 2018). This great success in predicting individual differences 

from connectivity patterns highlights the potential for fMRI-based neuromarker 

discovery and paves the way for more personalized approaches in clinical practices. 

Yet, all past work in functional connectivity have relied on group-defined atlases to 

assess connections across nodes and extract network properties. However, similar inter-
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individual variability is expected at the node-level, that is, when identifying brain regions 

(or nodes) at the very first step of the connectivity analysis pipeline. To what extent 

spatial topography of nodes vary across individuals, and how this variability is related to 

variations in behavior remains an interesting open question. A recent work has shown 

that, in many cases, inter-individual variability in nodes’ spatial configuration can be 

interpreted as changes in functional connectivity (Bijsterbosch, et al. 2018). It is critical 

to isolate the effect of node configuration from connectivity changes, and also to increase 

the homogeneity of the nodes identified by functional parcellation approaches. If nodes 

are defined by collapsing data over the entire population, they are likely to include a 

mixture of non-homogenous timeseries which is not representative of any of the 

individual nodes, and thus may lead to erroneous outcomes. The same challenges hold 

when identifying functional networks or systems at the population level. Individualized 

approaches to parcellation are therefore of great interest. 

Compared to population-level, individualized parcellation is typically more 

challenging as it requires extraction of meaningful information from a pool of confound 

factors, using less data, lower signal to noise ratio. Therefore, to be practically useful, an 

individualized parcellation technique must fulfill certain criteria, including (1) having 

high reproducibility within individuals; (2) having enough sensitivity to functional 

differences across individuals; (3) preserving correspondences across individuals to 

facilitate comparative studies; (4) being computationally efficien to allow recalculation of 

the atlas for every individual; and ideally, (5) extracting functionally relevant features 

which are predictive of behavior and generalize across populations.  
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Despite these challenges, a number of successful individualized parcellation 

approaches have been introduced over the past decade, using techniques such as k-means 

(Flandin, et al. 2002; Kahnt, et al. 2012), hierarchical clustering (Arslan and Rueckert 

2015; Blumensath, et al. 2013; Meunier, et al. 2010; Moreno‐Dominguez, et al. 2014), 

and spectral clustering (Chen, et al. 2013; Craddock, et al. 2012; Shen, et al. 2013; Van 

Den Heuvel, et al. 2008). Despite the initial success, the current parcellation methods fall 

short in meeting at least two of the above-mentioned requirements, namely the 

computational efficiency and the predictive power.  

More importantly, all previous functional brain parcellations have focused on resting-

state fMRI data, acquired from individuals at rest while they are not performing any 

explicit task. As such, these approaches are fundamentally limited in their ability to 

capture variability across different tasks and cognitive states. Yet we know the brain 

functional organization is not fixed, rather it dynamically reconfigures across cognitive 

states (Braun, et al. 2015; Cole, et al. 2014; Mennes, et al. 2013), possibly in adaptation 

with the underlying cognitive processes’ demands (Gonzalez-Castillo, et al. 2015; 

Niendam, et al. 2012). However, all the commonly adopted parcellations to date, whether 

at the individual or group level, have defined a single functional parcellation with the 

underlying assumption that nodes and networks are homogenous in function and 

invariant in size, shape or position regardless of brain state. 

How the spatial topography of nodes and networks vary across cognitive states, to 

what extent such variations are functionally meaningful and reflective of the underlying 

cognitive processes, and whether the state-dependent parcellations could lead to more 
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insights about the relationship between brain and behavior are all questions that I attempt 

to answer in my thesis. 

 

 Summary of following chapters 

This thesis includes six empirical chapters (Chapters 2-7), all about developing data 

summarization algorithms which allow for a better understanding of the brain at the 

individual and state level. Five of these chapters (Chapters 2-5 and 7) are already 

published or are currently in press (Salehi, et al. 2018a; Salehi, et al. 2018b; Salehi, et al. 

2017a; Salehi, et al. 2017b). Chapter 6 describes preliminary results from an ongoing 

project. Below is a brief description of each empirical chapter. 

While there is significant evidence that patterns of brain functional connectivity 

reconfigure with brain state, it is not fully clear how these reconfigurations relate to 

behavior and attention. In chapter 2, I develop a generalized, interpretable, and predictive 

model of attention based on brain connectivity reconfiguration. I show that models based 

on connectivity reconfiguration predict individual differences in attention, both within- 

and across four independent data sets with distinct attention-demanding tasks and 

behavioral measures: working memory task (n-back), continuous performance task 

(gradCPT), and the Attention Network Task (ANT). A post hoc analysis of predictive 

features reveals that individuals with greater flexibility in their connectivity strength 

during rest, but higher stability during task, exhibit better attention performance. While 

this chapter investigates the inter-individual and inter-state variability in functional 

connectivity, it starts from a fixed functional atlas both across individuals and states. The 

observed connectivity reconfiguration provokes the question of whether the underlying 
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functional atlas reconfigures across individuals and even within an individual, across 

cognitive states. In the subsequent chapters, I attempt to answer this question at node- and 

network-level. 

In Chapter 3, I introduce a parcellation technique to delineate functional networks both 

at the individual- and group-level. The proposed technique deploys the notion of 

submodularity to jointly parcellate the cerebral cortex while establishing an inclusive 

correspondence between the individualized functional networks. Using this parcellation 

technique, I successfully establish a cross-validated predictive model that predicts 

individuals' sex, solely based on the parcellation schemes (i.e. the node-to-network 

assignment vectors). The successful sex predictions illustrate that individualized 

parcellation of functional networks can reveal subgroups in a population and suggests 

that the use of a global network parcellation may overlook fundamental differences in 

network organization. This is particularly important for studies comparing patients versus 

controls or even patient subgroups. This individualized approach to the study of brain’s 

functional organization has many implications in cognitive and clinical neuroscience.  

In chapter 4, I extend the analysis of chapter 3 to explore the possibility of functional 

networks changing across cognitive states, even when considered within an individual. 

There is extensive evidence that functional organization of the human brain varies 

dynamically as the brain switches between task demands, or cognitive states (Braun, et al. 

2015; Gonzalez-Castillo, et al. 2015; Mennes, et al. 2013; Niendam, et al. 2012; Shine, et 

al. 2016a; Shirer, et al. 2012). However, the network structure of the brain has been 

considered static. In this chapter, I formulate an individualized and state-specific network 

parcellation pipeline, using fMRI data obtained across multiple cognitive states (task-



 

 

 

30 

evoked and rest conditions) and across multiple subjects. By assessing the parcellation 

reconfigurations, I demonstrate that the brain’s functional networks are not spatially 

fixed, but that many nodes change their network assignments as a function of cognitive 

state. I show these reconfigurations are highly robust and reliable such that they can be 

used to predict cognitive states with up to 97% accuracy. 

Chapter 5 extends the network-level parcellation analysis to delineation of functional 

nodes at the individual-level. All previous chapters were premised on the implicit 

assumption that functional nodes are fixed and shared across individuals and states. In 

Chapter 5, I challenge this assumption by developing an individualized parcellation 

algorithm to identify functional nodes specific to each individual. The algorithm 

proposed in earlier chapters requires computing pairwise distances across all elements of 

the ground set. However, computing the pairwise distances across millions of voxels is 

computationally expensive, and thus not scalable to the voxel-level analysis. In this 

chapter, I address the computational challenge by introducing a distributed approach 

which leverages previously developed group-level parcellation as the initial point, and 

morphs it to account for the individual’s functional organization. I then evaluate the 

strength of the proposed individualized parcellation in capturing informative individual 

specific features by showing that it improves the accuracy of a predictive model that 

predicts IQ using functional connectivity.  

In Chapter 6, I present preliminary results suggesting that the individual variability in 

functional parcellations are substantial, and reproducible across sessions. Using fMRI 

data from multiple individuals and sessions, I show that individuals can be identified with 

up to 99% accuracy solely based on their functional parcellation pattern, suggesting that 
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the individualized functional parcellations are robust and reliable, acting as an identifying 

“fingerprint”. 

Yet, perhaps contrary to what is traditionally assumed, individualized functional 

parcellations are not fixed, but they reliably reconfigure by task. In Chapter 7, the final 

chapter, I provide strong evidence that functional parcellation of the human brain does 

not yield a fixed atlas of node definitions, rather, nodes reconfigure substantially and in a 

meaningful manner, according to brain state. Neuroimaging studies have long sought to 

define a single functional atlas that “best” represents the brain, assuming that such an 

atlas exists, at least at the individual level. Using fMRI data from a highly sampled 

subject as well as two independent replication data sets, I challenge this assumption, 

showing, for the first time, that node boundaries reconfigure across states, while being 

consistent for a given state. These reconfigurations are robust and reliable both within a 

subject across different sessions, and across different subjects, such that a topographic 

measure of node size can significantly predict the task condition and the within-condition 

task performance.  

 

These findings have a wide range of implications for human brain mapping and, more 

generally, systems neuroscience. Most functional connectivity studies to date have used a 

fixed functional atlas. The present results, however, suggests that a single functional atlas 

is not applicable to all states. The state-dependent changes in connectivity could be 

attributable, at least in part, to reconfiguration of the underlying parcellation, and this 

should be considered as part of the interpretation of the results. I hope the proposed 

individualized state-specific parcellation methods will spark future research into custom 
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state-dependent atlases, which may in turn enhance our understanding of the brain’s 

state-dependent functional organization. 

While much work is still left to be done, and many improvements yet to be brought 

about, this body of research hopes to provide a data-driven methodology to facilitate a 

more comprehensive account of human brain at the individual and state level.  It is my 

hope that the work presented here serves as a theoretical and empirical foundation for 

future research into individual and state differences in brain function, behavior, and 

disease.  



Chapter 2: Brain network stability and flexibility form a 

generalizable predictive model of sustained attention 

 

 

 

Abstract 

While there is significant evidence that patterns of brain functional connectivity 

reconfigure with brain state, it is not fully clear how these reconfigurations relate to 

behavior and attention. Using a higher-order measure of connectivity, we develop a 

generalized, interpretable, and predictive model of attention based on brain network 

reconfiguration—that is, the degree to which networks exhibit stable or flexible 

functional connectivity profiles. We show that models based on network reconfiguration 

predict individual differences in attention, both within- and across four independent data 

sets with distinct attention-demanding tasks and behavioral measures: working memory 

task (n-back), continuous performance task (gradCPT), and the Attention Network Task 

(ANT). A post hoc analysis of predictive features reveals that individuals with greater 

flexibility in their network strength during rest, but higher stability during task, exhibit 

better attentional abilities. 
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 Introduction 

While all of us have experienced paying attention in our life, the term “attention” is 

notoriously difficult to define, perhaps due to its complex and non-unitary notion (Chun, 

et al. 2011; Lavie, et al. 2004; Pashler 1998; Rosenberg, et al. 2017a). Previous studies 

have developed different classifications and taxonomies of attention (Chun, et al. 2011). 

An influential model of attention divides attentional mechanisms into two classes of top-

down (goal-directed), and bottom-up (stimulus-driven) approaches (Corbetta and 

Shulman 2002). Another well-established model of attention divides the attention into 

three sub-systems according to the neural processes they involve: alerting, orienting, and 

executive-control (Fan, et al. 2005; Posner and Petersen 1990; Thiel, et al. 2004). These 

attentional mechanisms are common to everyone; however, their efficiency differs across 

individuals. Therefore, while developing such concrete taxonomies of attention holds 

great potential in revealing fundamentals of attention system, their performance in 

predicting inter-individual variability is not clear.  

With advancements in neuroimaging techniques (such as fMRI) and the proliferation 

of neuroimaging data, there has been increased attention on data-driven approaches to 

studying attention. These models traditionally take a group-level approach, describing 

features of neural signals that are, on average, related to attention across subjects (Fan, et 

al. 2005). Although group-level models can provide insight into neural mechanisms of 

attention, they do not necessarily capture inter-individual variation in attentional abilities. 

More recently, individual-level based analyses have received increased attention and 

studies have begun to develop data-driven models to describe (Fortenbaugh, et al. 2015; 

Shine, et al. 2016b) and predict (Madhyastha, et al. 2015; Rosenberg, et al. 2016d; 
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Rosenberg, et al. 2017b; Yoo, et al. 2018) individual differences in attentional abilities. 

Our recently developed model, connectome based predictive modeling (CPM) (Shen, et 

al. 2017), has shown success in predicting a range of behavioral tests (Beaty, et al. 2018; 

Finn, et al. 2015b; Hsu, et al. 2018; Rosenberg, et al. 2016d). Through these models, it 

has become evident that functional connectivity patterns estimated during rest and task 

performance can provide a reliable neuromarker of cognitive and attention function. 

We recently developed and validated a technique, connectome-based predictive 

modeling (CPM) (Shen, et al. 2017), that uses individual functional connectomes to 

predict cognitive and attention function(Finn, et al. 2015a; Rosenberg, et al. 2016a; 

Rosenberg, et al. 2016b). CPM models have shown success in predicting individual 

differences in a range of attention measures (Rosenberg, et al. 2017a), have generalized 

to predict attention deficit hyperactivity disorder (ADHD) symptoms (Rosenberg, et al. 

2016a) and pharmacologically induced changes in attention function (Rosenberg, et al. 

2016b), and have contributed to our understanding of the networks underlying attention, 

both during task-performance and resting-state. Through these models, attention has been 

characterized as a network property of the brain, where networks are statically defined 

within each functional condition. 

Despite significant evidence on stability of functional networks across sessions and 

states (Cole, et al. 2014; Finn, et al. 2017; Gratton, et al. 2018; Laumann, et al. 2016; 

Noble, et al. 2017a), researchers have long recognized that the human brain displays 

network-level reconfiguration during resting-state (Calhoun, et al. 2014; Zalesky, et al. 

2014), task performance (Braun, et al. 2015; Gonzalez-Castillo, et al. 2015; Shine, et al. 

2016a), and in transition from resting-state to task (Mennes, et al. 2013; Niendam, et al. 
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2012; Shirer, et al. 2012). To what extent such changes are meaningful and can contribute 

to our understanding of behavior, remains an open question. Specifically, there is an 

implicit assumption that connectivity patterns need to be fundamentally stable in order to 

serve as a reliable neuromarker for behavioral variables and clinical symptoms (Gratton, 

et al. 2018). This is in line with characterization of attention as a network property of the 

brain. However, the state-evoked network-level reconfigurations are also likely to be 

important in understanding the neural mechanism underlying attention. 

Here we build upon our previous findings and extend them to show that attention is, in 

fact, a property of the brain network reconfiguration. We develop a cross-validated 

predictive model whicih uses network reconfigruation across multiple rest and task states 

to predict individual differences in attention, both within- and across four independent 

data sets with distinct attention-demanding tasks and behavioral measures. The tasks 

include the n-back working memory task (which was used in two of the data sets), the 

gradual-onset continuous performance task (gradCPT), and the Attention Network Task 

(ANT). Further investigation of the predictive model reveals that individuals with greater 

flexibility in their network strength during resting-state, but higher stability during task 

states, exhibit better attentional abilities. The differential role of network stability and 

flexibility in characterization of attention is an interesting observation, which is further 

corroborated and replicated in four independent data sets with distinct participants, tasks, 

behavioral measures, and scan sites.  

 

 Results 

2.1 Higher-order measure of network reconfiguration  
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These analyses were performed using fMRI data from four independent studies with 

individuals performing separate attention tasks. Each data set included two runs of 

resting-state and two or more runs of task-based fMRI (variable across data sets). Details 

of the tasks have been published elsewhere (Barch, et al. 2013; Rosenberg, et al. 2015b; 

Rosenberg, et al. 2018; Rosenberg, et al. 2016d) and are briefly described below.  

Three data sets were collected at Yale University. The first consisted of 27 subjects 

performing n-back working memory task (n-back task (Rosenberg, et al. 2015b)) for 

three runs, the second consisted of 18 subjects performing the gradual-onset continuous 

performance task (gradCPT (Esterman, et al. 2012; Rosenberg, et al. 2016d; Rosenberg, 

et al. 2013)) for three runs, and the third consisted of 38 subjects performing the attention 

network task (ANT (Rosenberg, et al. 2017b)) for five runs. The fourth data set was from 

the Human Connectome Project (HCP (Van Essen, et al. 2013a)) 900 Subjects release 

(S900) and consists of 717 subjects performing the n-back working memory task for two 

runs, one with left-right (LR) and the other with right-left (RL) phase encodings. 

Performance was assessed using sensitivity (d′) for the n-back and gradCPT data sets, the 

coefficient of variation of correct-trial reaction time (RT CV) for the ANT data set, and 

the median correct-trial reaction time (Median RT) for the HCP data set. Only a limited 

number of subjects overlapped across Yale data sets which were excluded as appropriate 

(see Methods for more details). 

Functional connectivity matrices were assessed using a functional brain atlas (Shen, et 

al. 2013) consisting of 268 nodes covering the whole brain. The Pearson correlation 

coefficients between the time courses of each possible pair of nodes were calculated and 

normalized using Fisher’s z-transformation to construct 268×268 symmetrical 
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connectivity matrices, where each element represents a functional connection, or edge, 

between two nodes. Network strength vectors were calculated from the connectivity 

matrices by summing over all the edge values incident to a node and taking the absolute 

value of the sum, resulting in a 268×1 vector. This was performed for each subject and 

each run separately (Figure 1, steps 1 and 2). 

Next, for every subject, the Pearson correlation coefficients between strength vectors 

from task runs (denoted as Task Correlation or TC) and rest runs (denoted as Rest 

Correlation or RC) were calculated and normalized using Fisher’s z-transformation 

(Figure 1, step 3). TC and RC matrices measure the similarity (or difference) of network 

strength across runs of task performance and rest, respectively. They summarize the 

network strength reconfiguration across runs, such that higher values of TC or RC 

indicate a higher functional stability in brain connection and lower values reflect a higher 

functional flexibility in the network. We refer to TC and RC as higher-order measures of 

network reconfiguration, as they are derived from two successive correlations and thus 

contain information from the higher moments. Figure 1 provides a visual illustration of 

the entire pipeline, which was repeated for every subject in all four data sets. 
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Figure 1. The higher-order predictive modeling pipeline. For each functional run, the 
functional connectivity matrix is calculated, and the corresponding strength vector is derived. 
Next, the correlation between the strength vectors are calculated for each of the task and rest 
conditions, yielding two higher-order matrices: TC (Task Correlation) and RC (Rest Correlation). 
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Figure 2 displays TC (blue border) and RC (green border) matrices averaged over all 

subjects in each data set. We observed that TC values are on average significantly higher 

than RC values (p<0.0001, two-sided Mann-Whitney U test, replicated for all four data 

sets), suggesting that there is significantly higher stability in network strength between 

task runs relative to the rest. This pattern was observed in all four data sets, indicating the 

generality of this observation across multiple attention tasks.  
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Figure 2. A visualization of the higher order measures (TC and RC). TC matrix was 
calculated for every subject as the pairwise Pearson correlation of the strength vectors derived 
from different runs of the task performance. Similarly, RC matrix was derived by correlating the 
strength vectors across different runs of resting state. All Pearson r-values were normalized using 
Fisher z-transformation. The average of these matrices across subjects is depicted on the left. The 
distribution (across subjects) of each element of the TC and RC is displayed on the right. A two-
sided Mann-Whitney U test was performed to test whether TCavg values were significantly higher 
than RCavg values; *** indicates p<0.001. 

 

  



 

 

 

42 

2.2 Generalized predictive model of attention from network reconfiguration 

We next investigated individual differences in network strength reconfiguration. 

Motivated by the pattern observed at the population level (i.e., TC>RC), we hypothesized 

that the differences between TC and RC may predict individual differences in attentional 

abilities (here operationalized as task performance). To test our hypothesis, we developed 

a linear regression model to predict task performance using TC and RC as features, and 

tested this model using both internal (within-data set) and external (cross-data set) 

validations. Since different data sets had different TC and RC matrix sizes, we used the 

average of TC elements (TCavg) and RC elements (RCavg) as predictive features, and 

designed a linear model as follows: 

 y	 = 𝛽! +	𝛽"# × 𝑇𝐶$%& +	𝛽'# × 𝑅𝐶$%&, (1) 

where y represents the task performance measure, 𝛽!, 𝛽"# , 𝛽'#  are the model 

coefficients which are learned from the training set, and 𝑇𝐶$%& and 𝑅𝐶$%& are the higher 

order connectivity measures calculated for every subject. 

 

2.3 Internal validation: predicting attention within a data set  

To determine whether TC and RC predict task performance in novel individuals, we 

performed a leave-one-out cross-validation procedure. For each data set, we trained our 

linear model over n-1 subjects and tested to predict task performance for the left-out 

subject. The model’s predictive power was assessed using Pearson correlation between 

the predicted behavioral scores and the observed ones (Figure 3, diagonal plots) and the 

significance of the correlations were assessed by permutation testing (see Methods). The 

model significantly predicted task performance for novel subjects in all four data sets 
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(Figure 3: n-back, r=0.26, p<0.05; gradCPT, r=0.75, p<0.01, ANT, r=0.18, p<0.05; HCP, 

r=0.12, p<0.01). It suggests that models defined on network strength reconfiguration, that 

is, TC and RC, can significantly predict attention and generalize across subjects, tasks, 

and attention measures.  
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Figure 3. The predictive analysis using a linear model with TCavg and RCavg as features. 
The predicted behavioral scores versus observed ones are displayed for within-data set (diagonal 
elements) and cross-data set (off-diagonal elements) predictions. Within data set predictions were 
performed using leave-one-out cross-validation analysis. At every step a linear model was trained 
on n-1 subjects and tested on the left-out subject. Pearson correlation between the predicted and 
observed behavioral scores is reported along with the significance computed by a permutation 
test. Cross-data set predictions were performed by training a linear model on participants of one 
data set and predicting the performance for the other set. Of note, when the model is trained 
(tested) on n-back or gradCPT (behavior = d’) and tested (trained) on ANT (behavior = RT CV) 
or HCP (behavior = Median RT), the trained and tested behaviors are inherently inversely 
correlated with each other. Therefore, the negative correlation between the observed and 
predicted scores is expected. 
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2.4 External validation: predicting attention across data sets 

As a more powerful indicator of model generalizability, we tested whether models 

defined on network strength reconfiguration can predict attentional abilities across 

independent data sets. For every pair of data sets, we trained our linear model (defined in 

Eq. 1) on subjects of one data set (training set) and tested to predict task performance for 

the novel subjects in another data set (testing set). The model’s predictive power was 

assessed using Pearson correlation between the predicted behavioral scores and the 

observed ones. Note that in the cross-data set prediction setting, we predict how the 

subjects in the testing set would hypothetically perform if they were to perform the task 

in the training set. As such, the generalizability of the model is inherently limited by the 

difference in the tasks and the performance measures. Nonetheless, all sixteen pairwise 

models, with the exception of [ANT, n-back] pairs, yielded significant predictions 

(p<0.05; Figure 3, off-diagonal plots). 

Models were successful when trained and tested on data sets with matching task 

performance measures, that is [n-back, gradCPT] pairs with sensitivity (d’) and [ANT, 

HCP] pairs with reaction time statistics (RT CV and Median RT). Specifically, when 

trained on subjects in the n-back data set, a model significantly predicted d’ values of 

unseen subjects in the gradCPT data set (r=0.72, p<0.003). A separate model trained on 

the gradCPT data set significantly predicted the d’ scores for the novel subjects in the n-

back data set (r=0.42, p<0.05). Similarly, when trained on subjects in the ANT data set, a 

model significantly predicted RT CV for subjects in the HCP data set (r=0.15, 

p<0.00005). A separate model trained on HCP data set predicted Median RT for subjects 

in the ANT data set (r=0.38, p<0.03).  
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Interestingly, predictive models also generalized between data sets with non-matching 

performance measures. Specifically, when trained on subjects in the n-back data set, a 

model significantly predicted d’ values for unseen subjects in the HCP data set (r=-0.13, 

p<0.0006). A separate model trained on the HCP data set significantly predicted the 

Median RT scores for the novel subjects in the n-back data set (r=-0.5, p<0.008). 

Similarly, when trained on subjects in the gradCPT data set, a model significantly 

predicted d’ for novel subjects in the ANT data set (r=-0.39, p<0.02) and HCP data set 

(r=-0.15, p<0.00007). The reverse models were also successful and significantly 

predicted the RT CV (r=-0.82, p<0.0002) and Median RT (r=-0.83, p<0.00002) for 

subjects in the gradCPT data set. The negative correlation between predicted and 

observed scores is expected given that higher sensitivity values (d’) correspond to better 

attentional performance whereas higher reaction time statistics (RT CV and Median RT) 

correspond to worse attention. Note that the ceiling model performance is determined by 

both the reliability of the attention tasks and the theoretical relationship between d’ and 

RT statistics, which is unlikely to be a perfect inverse correlation.  

When trained on Yale data sets (n=18, 27, and 39) and tested on HCP data set 

(n=717), the training sample was smaller than the testing sample. This could result in 

high variance in the parameter estimation, which is a barrier to model performance and 

generalizability. Nonetheless, all three linear models significantly predicted behavior for 

HCP subjects.  

That the models built on TC and RC significantly predicted attention across four 

independent data sets with independent subjects, different attention tasks, different 
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performance measures, and distinct acquisition sites is a remarkable finding, highlighting 

the significance of the information captured by these higher order measures (TC and RC). 

 

2.5 Interpreting the predictive features, the differential role of task and rest  

One advantage of the proposed linear model based on TC and RC is that it offers an 

immediate interpretation of the underlying brain mechanism. TC and RC both measure 

the underlying functional network reconfiguration across runs. Motivated by this, we 

sought to investigate how TC and RC are related to attention by analyzing their 

coefficients in the linear model (i.e., TC coefficient (𝛽"#) and RC coefficient (𝛽'#) in Eq. 

(1) 

Figure 4 displays TC coefficients (blue) and RC coefficients (green) for the linear 

models trained and tested on all pairwise combination of the data sets. When trained on 

n-back and gradCPT data sets with sensitivity (d’) as the observed task performance, the 

model learns positive coefficients for TC (𝛽"# > 0) and negative coefficients for RC 

(𝛽'# < 0), suggesting that d’ is significantly positively related to TC (p<0.03, one-tailed 

t-test) and significantly negatively related to RC (p<0.03, one-tailed t-test). When trained 

on ANT and HCP data sets with RT statistics as task performance, the model learns 

negative coefficients for TC (𝛽"# < 0) and positive coefficients for RC (𝛽'# > 0), 

suggesting that RT statistics are significantly negatively related to TC (p<0.02, one-tailed 

t-test) and positively related to RC. The p-values are reported after ruling out the 

possibility of multicollinearity (see Table S1 for details). Given that larger d’ and smaller 

RT statistics both indicate better attentional abilities, our findings suggest that higher TC 

and lower RC predict better attention performance. 
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Figure 4. The linear model coefficients for the within-data set and cross-data set predictive 
analysis. TC coefficients are positively associated with attentional abilities (whether measured by 
higher sensitivity [n-back and gradCPT] or lower reaction time [ANT and HCP]). Conversely, 
RC coefficients are negatively associated with attentional performance. The significance of the 
relationship between each predictor and the output is assessed by one-tailed t-tests (using the 
Pr(>|t|) component in R’s linear model). See Table S1 for the statistical significance and 
multicollinearity analysis. *** = p<1e-03, ** = p<1e-02, and * = p<5e-02. 
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Rooted in the network strength reconfigurations, higher TC indicates a higher stability 

(or consistency) in network organization during task runs. Similarly, lower RC reflects 

higher flexibility (or variability) in the network rewiring during rest. Together, these 

findings demonstrate the differential role that task and rest play in attentional abilities. 

Replicated across four independent data sets with varied attentional challenges, our 

findings suggest that better attentional abilities are associated with higher stability during 

task runs and higher flexibility during rest runs. 

We also studied whether the linear model based on TC or RC values alone (i.e., a one-

dimensional linear model) could predict attention across data sets. We observed that 

whereas the model trained on RC element alone could not predict attention, the model 

trained on TC element alone was successful (Figure S1), yet the predictions were less 

significant than or comparable to the models trained on both TC and RC. This was the 

case despite the lower dimensionality of the former (which could reduce variance and 

enhance performance), suggesting that RC can contribute unique information about 

individual differences in attention.  

 

 Discussion 

We proposed a generalized, interpretable and predictive model of attention based on 

brain network reconfiguration—that is, the degree to which networks exhibit stable or 

flexible functional connectivity profiles. The proposed model predicted individual 

differences in attention abilities within and across four independent data sets with 

different attention tasks (the gradual-onset continuous performance task, the Attention 

Network Task, a working memory task collected at Yale, and a different working 



 

 

 

50 

memory task collected by the HCP Consortium), different measures of attention 

(sensitivity vs. reaction time statistics), and different data acquisition sites (Yale 

University vs. Washington University). Further investigation of these models indicated 

higher stability in network strength during task runs and higher flexibility during rest runs 

are together predictive of better attentional abilities.  

 

3.1 A data-driven and predictive characterization of attention 

Previous work has shown great success in defining taxonomies of attention common 

across individuals (Chun, et al. 2011; Corbetta and Shulman 2002; Fan, et al. 2005; 

Posner and Petersen 1990; Thiel, et al. 2004). While they hold great potential in 

describing the fundamentals of attention mechanism in the brain, they do not address 

individual variability in attentional abilities. More recently, studies have increased focus 

on individual variability and have developed descriptive (i.e., correlation-based) models 

of attention from brain functional connectivity (Braun, et al. 2015; Fortenbaugh, et al. 

2015; Shine, et al. 2016a; Shine, et al. 2016b). These studies have been successful in 

explaining the causal mechanisms of attention; however, it is not clear if they can predict 

behavior for novel subjects—that is, to accurately forecast behaviors that have not yet 

been observed—thus, their use for clinical and translational practices is debatable. 

Although modern neuroscience and psychology is increasingly focusing on predictions, 

rather than explanation, the distinction between the two is rarely appreciated (Yarkoni 

and Westfall 2017).  

More recently, studies have started taking pains to develop more cross-validated 

predictive models that generalize to novel subjects (Doyle, et al. 2015; Haynes 2015; 
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Woo, et al. 2017). Even within these predictive models, the majority adopt internal 

validation strategies such as leave-one-subject-out cross-validation (Ekman, et al. 2012), 

as opposed to external validation using independent samples. Nonetheless, external 

validation is necessary for testing whether models of symptoms, traits, and behavior 

generalize beyond a single training data, a necessary precursor for practically useful 

models (Yarkoni and Westfall 2017). Only recently have cognitive neuroscientists 

attempted to validate predictive models in independent datasets; the work by Rosenberg 

et. al (Rosenberg, et al. 2016d) was the very first study to demonstrate the use of brain 

networks for external prediction of attention. Here, we propose a model that predicts 

attention across four independent datasets with different attention tasks, behavioral 

measures, data acquisition sites and imaging parameters. In doing so, we meet the highest 

standard of generalizability, that is, external validation across entirely independent 

samples (Riley, et al. 2016).  

 

3.2 Characterizing attention through network reconfiguration 

Previous work in our lab has shown that attention is a network property of the brain 

(Rosenberg, et al. 2016d). Using a novel technique, connectome-based predictive 

modeling (CPM), we had previously identified a set of predictive edges in the brain that 

can predict sustained attention in a cross-validated setting (Finn, et al. 2015c; Rosenberg, 

et al. 2016d; Shen, et al. 2017). This work builds on our previous findings and extends it 

to show that attention is, in fact, a property of the brain network reconfiguration. Our 

work is the first to demonstrate that measures of whole-brain network reconfiguration 

predict attention across independent samples. By focusing on the similarities of 
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connections across runs, rather than the connections themselves, we provide a non-

stationary model to investigate attention.  

Given the dynamic notion of attention mechanisms in the brain, its reflection in brain 

network reconfiguration is expected. By leveraging network changes across runs of task 

(TC) and rest (RC), we capture the factors of attention that are common across a wide 

range of attention tasks. Our findings demonstrate the differential role that task and rest 

runs play in attentional abilities; whereas stability in network strength during task 

performance predicts better attention (Figure 4, TC coefficients positively related to task 

performance), stability during rest actually predicts worse attentional abilities (Figure 4, 

RC coefficients negatively related to task performance). This observation was replicated 

across all within- and cross-data set predictions, indicating the generalizability of this 

finding across attention tasks and attention measures. 

 

3.3 Network stability during task and flexibility during rest predict better attention 

Attentional mechanisms are complex, requiring the brain to select, modulate, and sustain 

the focus on information that are most relevant to behavior. Given the similarity of the 

challenges performed across task runs, it is reasonable to expect similar patterns of 

information selection and modulation to be leveraged for the emergence of the most 

relevant behavior. By exploring the coefficients of our linear model built on higher-order 

measures, we observe that task-correlation (TC) has a positive contribution to the task 

performance (Figure 5). That the higher similarity across task runs indicates a better task 

performance could demonstrate an optimal use of attentional resources by an engaged 

and attentive brain. This observation highlights the contribution of neural stability during 
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task runs in sustaining attention and vigilance for a goal-directed behavior. This 

phenomenon was also observed at the population level with TC values being significantly 

higher than RC (Figure 2). 

Resting state, on the other hand, imposes insufficient constraints on cognitive 

processes in the brain (Stoffers, et al. 2015). In the absence of overt stimuli and external 

task demands, resting-state cognitive processes tend to be internally directed, similar to 

what is experienced during mind-wandering (Gruberger, et al. 2011; Smallwood and 

Schooler 2006). Given the unconstrained notion of resting states, such processes are more 

likely to vary across different runs. Through the same exploration of linear model 

coefficients, we observed that rest-correlation (RC) negatively contributes to the task 

performance, that is, lower similarities across rest runs provoke a better task 

performance. These observations are in line with recent studies investigating the 

association of neural flexibility with cognitive flexibility (Braun, et al. 2015), and 

learning (Bassett, et al. 2011; Reddy, et al. 2018). Consistent with previous work, we 

demonstrated that higher network flexibility during rest, defined as variation in network 

strength, provokes heightened attention. 

Recent work has characterized these network-level reconfiguration in the context of 

flexibility, and has shown individual differences in network flexibility can predict 

differences in a wide range of cognitive processes including memory (Akers, et al. 2014), 

learning (Bassett, et al. 2011), and cognitive control. However, Our work builds on top of 

previous findings and demonstrates, for the first time, that the two features together form 

a predictive and generalizable model of individual differences in attention.  
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3.4 Whole-brain characterization of attention  

The proposed predictive features—TC and RC—are derived from the whole brain. They 

capture the correlation between strength vectors which have elements from the whole 

brain, and the strength measure itself is a whole-brain network measure. Characterizing 

attention by whole-brain network measures is in line with recent findings (Castellanos 

and Proal 2012; Rosenberg, et al. 2016d) suggesting that attention, like other higher-order 

cognitive abilities, is likely encoded in distributed neural systems involving networks of 

many regions (Finn, et al. 2015c). While the traditional function-location mappings (Fan, 

et al. 2005) provide a systematic approach to study attention, restricting our 

measurements to a specific region of the brain may not provide a holistic view of the 

complex attentional mechanisms ranging from information gathering to selection of 

relevant information, modulation of the selected information to sustaining the attention 

over time information (Cohen, et al. 2015; Desimone and Duncan 1995). Models that 

incorporate information from the entire brain, like the one developed here, may better 

account for the concerted and inter-connected processes that give rise to attention 

(Rosenberg, et al. 2017a; Rosenberg, et al. 2016d), and therefore could better capture an 

“overall” ability of subjects to sustain attention independent of a specific task or a 

specific measure.  

 

3.5 Additional consideration 

We estimated network reconfiguration by considering the entire run, estimated across 

different runs, in this work conditions with acquisitions spanning a series of continuous 

performance, event-related, and blocked tasks. Future work can extend this work to 
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characterize attention by investigating the network reconfigurations over considerably 

shorter periods of time than these minutes-long task intervals, particularly given the 

growing literature on the dynamic nature of functional brain organization (Cohen 2018).  

To conclude, we proposed a generalized, interpretable, and predictive model of 

attention based on brain network reconfiguration. The proposed model summarizes the 

functional connectivity patterns that remain stable—and those that change—across 

different runs of task (TC) and rest (RC). Our findings suggest that more stability and 

consistency during task runs and higher flexibility during rest runs contribute to better 

attention. Together, these findings demonstrate the differential role of functional network 

stability and flexibility in attention. The specificity and generalizability of the current 

approach is promising, suggesting implications beyond this work. Future work may seek 

to extend this approach to predict a wider range of cognitive and clinical traits. 

 

 Materials and Methods 

Four independent data sets were used in this work. Three data sets were acquired at Yale 

University (Rosenberg, et al. 2015b; Rosenberg, et al. 2018; Rosenberg, et al. 2016d), 

and the fourth data set was from Human Connectome Project 900 Subject Release (S900) 

(Barch, et al. 2013; Van Essen, et al. 2013b). Details of the tasks have been published 

elsewhere (Barch, et al. 2013; Rosenberg, et al. 2015b; Rosenberg, et al. 2018; 

Rosenberg, et al. 2016d) and are described below.  

 

4.1 Yale data sets 

4.1.1 Participants and processing 



 

 

 

56 

All data were acquired with participants’ written consent and in compliance with 

procedures approved by the Yale University Human Subjects Committee. Three cohorts 

of subjects were used in this study (n-back, gradCPT, and ANT data sets), which are 

described in details below: 

 

4.1.2 The n-back data set 

Participants. Twenty-eight participants (16 females, ages 18–33 years, mean 

age = 25 years) were recruited from Yale University and the surrounding community. 

Previous work described a subset of this data set (Rosenberg, et al. 2015b); after 

publication six additional participants were collected with identical procedures and scan 

parameters. Due to excessive head motion, defined a priori as >2 mm translation or >3° 

rotation during a single run, we excluded one subject and applied the rest of our analysis 

to the remaining twenty-seven subjects. 

Paradigm, stimuli, and procedures. As described previously (Rosenberg, et al. 2015a), 

scan sessions began with a high-resolution anatomical scan, followed by a 6-min resting-

state fMRI scan, three 8.4-min n-back task runs, another 6-min resting scan, and a 

face/scene localizer scan (not analyzed here). Task stimuli consisted of face images 

overlaid on irrelevant distractor scenes. Participants were instructed to respond via button 

press to novel faces and withhold response to rare face repeats. Each task run included 

three experimental blocks: low load (1-back), working memory load (2-back), and 

perceptual load (1-back with degraded face stimuli). Performance was measured with 

sensitivity (d'), or hit rate relative to false alarm rate. d' was calculated separately for each 

task condition (1-back, 2-back, and degraded 1-back tasks). Here, we used d' on the 1-
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back task as our primary performance measure. We focused on 1-back performance 

because the 2-back and degraded 1-back conditions were significantly more difficult than 

the gradCPT and ANT. Thus, 1-back d' was the most comparable to the behavioral 

measures in our other two data sets. 

 

4.1.3 The gradCPT data set 

Participants. Twenty-five subjects (13 females, ages 18–32 years, mean age = 22.7 years) 

from Yale University and the surrounding community performed a sustained attention 

task, the gradual-onset continuous performance task (gradCPT; (Esterman, et al. 2012; 

Rosenberg, et al. 2013)) during fMRI. Here we excluded seven subjects with at least one 

missing fMRI run and analyzed the remaining eighteen subjects. 

Paradigm, stimuli, and procedures. As described in detail in Rosenberg et al. 

(Rosenberg, et al. 2016d), fMRI scan sessions included a high-resolution anatomical 

scan, a 6-min resting-state fMRI scan, three 13:44-min gradCPT runs, and another 6-min 

resting scan. During gradCPT runs, participants saw a central scene stimulus gradually 

transition from one image to the next at a constant rate. They were instructed to respond 

to each city scene but not to rare target mountains. Again, performance was assessed with 

sensitivity (d').  

 

4.1.4 The ANT data set 

Participants. Forty-four subjects (29 females, ages 18–37 years, mean age = 23.9 years) 

performed an Attention Network Task (ANT) (Fan, et al. 2005; Fan, et al. 2002). The 

data set is described in detail in Rosenberg et al. (Rosenberg, et al. 2017b). We excluded 
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five subjects for whom at least one of the first five fMRI task runs were missing. We 

further excluded one subject due to an unexpected interruption in the scanner. We then 

applied the rest of our analysis to the remaining thirty-eight subjects.  

Paradigm, stimuli, and procedures. ANT scan sessions began with a high-resolution 

anatomical scan, followed by two consecutive 6-min resting-state runs and six 7:05-min 

task runs. Since eleven subjects did not have data for the sixth run, it was excluded from 

the analysis. The ANT requires participants to determine whether a central arrow points 

left or right, ignoring surrounding distractor arrows. On each trial, participants see a 

spatially informative cue, a spatially uninformative center cue, or no cue. On congruent 

trials, the central arrow points in the same direction as the four flanker arrows. On 

incongruent trials, the central arrow points in the opposite direction of the flankers. By 

comparing reaction times (RTs) on different trial types, the ANT measures three 

components of attention: alerting (mean RT on no-cue trials – mean RT on center-cue 

trials), orienting (mean RT on center-cue trials – mean RT on spatial-cue trials), and 

executive control (mean RT on incongruent trials – mean RT on congruent trials). Here 

we assessed overall ANT performance with RT coefficient of variation (RT CV), that is, 

the standard deviation divided by the mean of correct-trial RT. RT CV, a robust measure 

of attention (Adólfsdóttir, et al. 2008; Wojtowicz, et al. 2013), provides a summary 

measure of ANT performance by measuring the variability of responses across all trial 

types—that is, how sensitive participants are to different cue and target types (Rosenberg, 

et al. 2017b). In this task, RT CV was a better measure of overall performance than 

response accuracy, which was typically near ceiling. 
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4.1.5 Imaging parameters and Preprocessing 

All cohorts were acquired with the same imaging parameters. FMRI data acquisition was 

performed on a 3T Siemens Trio TIM system equipped with a 32-channel head coil at the 

Yale Magnetic Resonance Research Center. Functional runs were acquired using a 

multiband gradient echo-planar imaging (EPI) sequence with the following parameters: 

repetition time (TR) = 1000 ms, echo time (TE) = 30 ms, flip angle = 62°, acquisition 

matrix = 84 × 84, in-plane resolution = 2.5 mm2, 51 axial-oblique slices parallel to the 

ac–pc line, slice thickness = 2.5, multiband 3, acceleration factor = 2. MPRAGE 

parameters were as follows: TR = 2530 ms, TE = 2.77, flip angle = 7°, acquisition 

matrix = 256 × 256, in-plane resolution = 1.0 mm2, slice thickness = 1.0 mm, 176 sagittal 

slices. 

Data were analyzed using BioImage Suite (Joshi, et al. 2011) and custom scripts in 

Matlab (Mathworks). Motion correction was performed using SPM 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). Linear and quadratic drift, mean 

signal from cerebrospinal fluid, white matter, and gray matter and a 24-parameter motion 

model (6 motion parameters, 6 temporal derivatives, and their squares) were also 

regressed from the data. Finally, data were temporally smoothed with a zero mean unit 

variance Gaussian filter. Images were warped to common space using a series of linear 

and nonlinear transformations as previously described (Shen, et al. 2013). 

 

4.2 Human Connectome Project (HCP) Data set 

4.2.1 Participants and processing 
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The HCP data set (Van Essen, et al. 2013b) includes data from 897 healthy individuals 

(S900) scanned during nine functional conditions (seven tasks and two rest). For details 

of the data acquisition parameters see Uǧurbil et al. (Uğurbil, et al. 2013) and Smith et al 

(Smith, et al. 2013b).  

Calculating TC required at least two runs of the same task. We used data from two 

runs of Working Memory (WM) task, with left-right (LR) and right-left (RL) phase-

encodings. WM (n-back tasks) was selected as it was the closest task to the ones 

performed at Yale data sets. To calculate RC, we used the two phase-encodings (LR and 

RL) of the resting-state data collected on day 2 (REST2). All the analyses were repeated 

with resting-state runs on day 1 (REST1) and the same results held. 

Participants. Analyses were restricted to n=717 subjects (392 females; age = 22–36+) 

for whom (i) data were available for all nine functional conditions (with left-right (LR) 

and right-left (RL) phase encoding), and (ii) working-memory task performance 

measures were available. Among the two reported HCP WM task performance 

measures—accuracy and median reaction time—we used the average of the median 

reaction time across all trials (Median RT), because the response accuracy was near 

ceiling for most subjects.  

Paradigm, stimuli, and procedures. Functional MRI scans were acquired during two 

different days: Day 1, part of which was used here, included two runs (LR and RL) of the 

working memory (WM) task (5:01 min per run), incentive processing (gambling) task 

(3:12 min), motor task (3:34 min), and rest (14:33 min). The details of task design have 

been previously described (Barch, et al. 2013; Van Essen, et al. 2013b). Here, we provide 

a brief description of WM task and an overview of the relevant aspects. In this task, 



 

 

 

61 

participants performed a visual n-back task, with blocked 0-back and 2-back conditions 

using four stimulus categories (faces, places, tools, body parts). Each run consisted of 8 

task blocks (10 trials each), with each stimulus category used twice, and 4 fixation 

blocks. Each block started with a 2.5 s cue indicating the task type (0-back versus 2-back) 

and the target (for 0-back). 

 

4.2.2 Imaging parameters and Preprocessing 

The HCP minimal preprocessing pipeline was employed (Glasser, et al. 2013), which 

includes artifact removal, motion correction and registration to MNI space. Further 

preprocessing steps were performed using BioImage Suite (Joshi, et al. 2011) and 

included standard preprocessing procedures (Finn, et al. 2015b) including regressing 24 

motion parameters, regressing the mean time courses of the white matter and 

cerebrospinal fluid as well as the global signal, removing the linear trend, and low pass 

filtering. 

 

4.3 Functional network construction 

Functional connectivity matrices were assessed using a functional brain atlas (Shen, et al. 

2013) consisting of 268 nodes covering the whole brain; this atlas was defined using 

resting-state data from a separate population of healthy subjects (Finn, et al. 2015b). The 

Pearson correlation coefficients between the time courses of each possible pair of nodes 

were calculated and normalized using Fisher’s z transformation to construct 268×268 

symmetrical connectivity matrices. This was done for each subject and for each run 

separately.  
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4.4 Higher-order network measures: task correlation (TC) and rest correlation (RC) 

Network strength vectors were calculated from the connectivity matrices by summing 

over all the edge values incident to a node and taking the absolute value of the sum, 

yielding a 268×1 strength vector. Each element i in the strength vector indicates the 

connectivity strength between node i and the rest of the brain. Let us denote the matrix 

including the strength vectors computed during all task runs VTask and those computed 

during rest runs VRest. Higher order measures of connectivity were computed by taking 

the Pearson correlation between every pair of strength vector in VTask (denoted as Task 

Correlation or TC; see Eq. 2) and every pair of strength vector in VRest (denoted as Rest 

Correlation or RC; see Eq. 3). 

 
𝑇𝐶 = 𝑐𝑜𝑟𝑟	(𝑉"$()) = 𝑐𝑜𝑟𝑟 34

𝑑*,* ⋯ 𝑑*,"
⋮ ⋱ ⋮

𝑑,-.,* ⋯ 𝑑,-.,"
9:, (2) 

 
𝑅𝐶 = 𝑐𝑜𝑟𝑟	(𝑉'/(0) = 𝑐𝑜𝑟𝑟 34

𝑑*,* ⋯ 𝑑*,'
⋮ ⋱ ⋮

𝑑,-.,* ⋯ 𝑑,-.,'
9:, (3) 

Where T is the total number of task runs and R is the total number of rest runs. For the 

purpose of predictive modeling, we took the average of the elements in TC and RC. 

 

4.5 Predictive modeling pipeline 

We used linear regression as our learning algorithm to predict behavioral scores. To make 

the predictive model generalizable across different data sets with different number of task 
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and rest runs, we considered the average of TC elements (TCavg) and RC elements 

(RCavg) as our predictive features, resulting in a 2-dimensional model as shown in Eq. 4. 

 y	 = 𝛽! +	𝛽"# × 𝑇𝐶$%& +	𝛽'# × 𝑅𝐶$%&, (4) 

where y is the behavioral score, 𝛽! is the bias, and 𝛽"#  and 𝛽'#  are the model’s 

coefficients. All coefficients (including bias) are learned in a fully cross-validated setting 

both within and across different data sets. 

 

4.6 Within-data set predictive modeling  

We performed a leave-one-out cross-validation analysis on each data set. At each step, 

we left data from one individual out of our training set. We trained our model with the 

remaining n-1 individuals, where n is the size of the data set. Then, we tested the result 

for the left-out subject. We repeated this for every individual until we obtained predicted 

behavioral scores for all n subjects.  

P-values for the leave-one-out cross-validation were calculated using non-parametric 

permutation test. This is because the traditional r-to-p conversions assume the degree of 

freedom is equal to n-2, where n is the number of subjects for each data set. However, 

analyses in the leave-one-out folds are not independent, so the number of degrees of 

freedom is overestimated. To perform permutation test, we randomly permuted the 

behavioral scores 100 times and each time ran the permuted scores through the predictive 

pipeline and calculated the correlation between the predicted values and the permuted 

scores. 

 

4.7 Cross-data set predictive modeling 
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External generalizability of the model was examined by employing cross-data set 

predictive analyses, i.e., external validation. This was performed by training a linear 

model on participants of one data set and testing it to predict the behavioral scores for the 

participants of another data set. For Yale data, some of the participants overlapped across 

data sets. To avoid non-independency of samples, we removed the overlapping subjects 

from the test set and left them in the training set.  

N-back data set. A linear model was trained on the subjects of n-back data set (n=27) 

using 1-back d’ values as output. The model was then used to predict d’ values for the 

subjects in the gradCPT data set (n=14, after removing 4 overlapping subjects), ANT data 

set (n=33, after removing 5 overlapping subjects), and HCP data set (n=717). Note that 

for the participants of ANT and HCP we did not have the true d’ values, instead, we 

plotted the predicted d’ values versus the observed RT CV (for ANT) and Median RT 

(for HCP), both of which are proxies for attention performance (Rosenberg, et al. 2017b) 

and are inherently inversely correlated with d’ values. That is, higher d’ values and lower 

statistics of reaction time are both indicative of better attentional abilities. 

GradCPT data set. A linear model was trained on the subjects of gradCPT data set 

(n=18) using d’ values as output. The model was then used to predict d’ values for the 

subjects in the n-back data set (n=23, after removing 4 overlapping subjects), ANT data 

set (n=35, after removing 3 overlapping subjects), and HCP data set (n=717). 

ANT data set. A linear model was trained on the subjects of ANT data set (n=38) 

using the coefficient of variation of the correct-trial reaction time (RT CV) as output. The 

model was then used to predict RT CV values for the subjects in the n-back data set 
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(n=22, after removing 5 overlapping subjects), gradCPT data set (n=15, after removing 3 

overlapping subjects), and HCP data set (n=717).  

HCP data set. A linear model was trained on the subjects of HCP data set (n=717) 

using the median correct-trial reaction time (Median RT) as output. The model was then 

used to predict Median RT values for the subjects in the n-back data set (n=27), gradCPT 

data set (n=18), and ANT data set (n=38). 

Additionally, it is important to note that the order of rest and task runs were different 

across the four data sets. That is, for n-back and gradCPT data sets rest runs were 

separated by task performance, whereas for ANT and HCP data sets rest runs were 

performed successively before task performance. Nonetheless, the predictive models 

generalized across all four data sets. 

 

4.8 Analysis of coefficients in the predictive model 

To safely interpret the coefficients of the predictive model, we first ruled out the 

possibility of multicollinearity. To this end, we calculated variance of inflation factor 

(VIF), which measures how much the variance of an estimated regression coefficient 

increases because of collinearity. In practice, there is typically a small amount of 

collinearity among the predictors. It is generally believed that a VIF value that exceeds 5 

or 10 indicates a problematic amount of multicollinearity. The significance of the 

relationship between each predictor and the output was assessed by one-tailed t-tests 

(using the Pr(>|t|) component in R’s linear model). 

 

 Code availability 
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The 268-node functional parcellation is available online on the BioImage Suite NITRC 

page (https://www.nitrc.org/frs/?group_id=51). MATLAB and R scripts were written to 

perform the analyses described; this code can be found at 

https://github.com/YaleMRRC/TC_RC 
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 Supplemental Materials 

 

 
Figure S1. Within and cross-data set predictive analysis using only TCavg as feature in the 
linear model. The predicted behavioral measures versus observed ones are displayed for within-
data set (diagonal elements) and cross-data set (off-diagonal elements) predictions. Comparing to 
the 2-dimensional linear model on both TCavg and RCavg (Figure 3 in the main manuscript), this 
mode model performs less significantly in most 2cases, despite its lower dimension (which causes 
lower variance error and lower chance of overfitting). This observation highlights the unique and 
meaningful information that RC could add to the model. 
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Table S1. Multicollinearity analysis using variance of inflation factor (VIF).  To safely 
interpret the coefficients of the predictive model, we first ruled out the possibility of 
multicollinearity. To this end, we calculated variance of inflation factor (VIF), which measures 
how much the variance of an estimated regression coefficient increases because of collinearity. 
VIF values are reported for each pair of training and testing data sets. For within-data set 
predictions, the mean and standard deviation across all leave-one-out models are reported. The 
smallest possible value for VIF is 1, which indicates the complete absence of collinearity. 
Typically in practice, there is a small amount of collinearity among the predictors. As a rule of 
thumb, a VIF value that exceeds 5 or 10 indicates a problematic amount of multicollinearity. The 
significance of the relationship between each predictor and the output is assessed by one-tailed t-
tests (using the Pr(>|t|) component in R’s linear model). The significant values are displayed in 
bold. 

  



Chapter 3: An Exemplar-based Approach to Individualized 

Parcellation Reveals the Need for Sex Specific Functional Networks 

 

 

 

Abstract 

Recent work with functional connectivity data has led to significant progress in 

understanding the functional organization of the brain. While the majority of the 

literature has focused on group-level parcellation approaches, there is ample evidence 

that the brain varies in both structure and function across individuals. In this work, we 

introduce a parcellation technique that incorporates delineation of functional networks 

both at the individual- and group-level. The proposed technique deploys the notion of 

“submodularity” to jointly parcellate the cerebral cortex while establishing an inclusive 

correspondence between the individualized functional networks. Using this parcellation 

technique, we successfully established a cross-validated predictive model that predicts 

individuals’ sex, solely based on the parcellation schemes (i.e. the node-to-network 

assignment vectors). The sex prediction finding illustrates that individual parcellation of 

functional networks can reveal subgroups in a population and suggests that the use of a 

global network parcellation may overlook fundamental differences in network 

organization. This is a particularly important point to consider in studies comparing 

patients versus controls for example or even patient subgroups. Network organization 

may differ between individuals and global configurations should not be assumed. This 
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approach to the individualized study of functional organization in the brain has many 

implications for both neuroscience and clinical applications. 
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 Introduction 

The human brain is functionally segregated into multiple spatially-distributed networks, 

and how best to divide or parcellate the brain into these networks is a fundamental 

question for neuroscience (Power, Cohen et al. 2011, Yeo, Krienen et al. 2011, Yang, Fan 

et al. 2016). Resting-state functional magnetic resonance imaging (fMRI) studies have 

consistently identified a number of brain networks that replicate across different datasets 

(Power, Cohen et al. 2011, Yeo, Krienen et al. 2011) and overlap with task activation 

patterns (Smith, Fox et al. 2009). The spatial organization of these networks is thought to 

support a wide range of cognitive functions (Dosenbach, Fair et al. 2007, Laird, Fox et al. 

2011), and such networks have been shown to be altered in clinical disorders (Bush 2011, 

Stern, Fitzgerald et al. 2012, Zhu, Wang et al. 2012).  

The majority of previous work on parcellating the brain into networks has been 

focused on group-level analyses (Power, Cohen et al. 2011, Yeo, Krienen et al. 2011, 

Shen, Tokoglu et al. 2013, Gordon, Laumann et al. 2014) with the aim of defining a set of 

networks that generalizes over all individuals. Group-level analysis is typically 

accomplished by collapsing data from individuals, either by averaging the subject’s 

connectivity matrices (Power, Cohen et al. 2011, Yeo, Krienen et al. 2011) or by 

concatenating time courses from each subject, as in the case of Independent Component 

Analysis (ICA) (Beckmann, DeLuca et al. 2005, Smith, Fox et al. 2009). As a result, 

these approaches do not preserve information regarding inter-individual variability. 

Nevertheless, emerging studies have highlighted the importance of inter-individual 

variability in functional connectivity in contributing to individual differences in behavior 

and cognition (Van Horn, Grafton et al. 2008, Baldassarre, Lewis et al. 2012, Mueller, 
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Wang et al. 2013, Zilles and Amunts 2013, Calluso, Tosoni et al. 2015, Finn, Shen et al. 

2015, Smith, Nichols et al. 2015, Finn and Constable 2016, Rosenberg, Finn et al. 2016). 

Such inter-individual variability in functional connectivity is likely to be expressed at the 

network level and thus should be revealed by functional parcellation schemes.  

Accordingly, individual-level parcellation of the brain into networks has recently 

received increased attention. To enable functional network parcellation at the individual-

level, one plausible approach is to apply a back-projection from the group-level 

parcellation. This approach has been prevalent in ICA studies; and techniques such as 

principle component analysis (PCA) back-projections (Calhoun, Adali et al. 2001) and 

GLM dual regression approaches (Beckmann, Mackay et al. 2009) have been developed. 

However, studies have reported notable limitations for ICA approaches at the individual-

level (Zuo, Kelly et al. 2010), including shortcomings to address inter-subject variation, 

limitations in scaling to higher dimensions (i.e. finer grained parcellations), and high 

sensitivity to artifacts such as motion, scanner noise, and physiological noise (McKeown, 

Jung et al. 1998, McKeown, Hansen et al. 2003, Cole, Smith et al. 2010). To reduce the 

impact of ICA limitations in addressing inter-subject variability, extensions of this 

method such as independent vector analysis (IVA) have been proposed (Lee, Lee et al. 

2008, Michael, Anderson et al. 2014). While promising, IVA is highly sensitive to each 

individual data and suffers from excessive computational burden and memory 

requirements (Michael, Anderson et al. 2014). More recently, studies have used 

functional connectivity, as derived from BOLD fMRI, to establish individualized 

networks (Eickhoff, Thirion et al. 2015), using techniques such as k-means (Flandin, 

Kherif et al. 2002, Kahnt, Chang et al. 2012), hierarchical clustering (Bellec, Rosa-Neto 
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et al. 2010, Meunier, Lambiotte et al. 2010, Moreno‐Dominguez, Anwander et al. 2014, 

Arslan and Rueckert 2015), spectral clustering (Thirion, Flandin et al. 2006, Van Den 

Heuvel, Mandl et al. 2008, Craddock, James et al. 2012, Chen, Li et al. 2013, Shen, 

Tokoglu et al. 2013), and boundary mapping (Cohen, Fair et al. 2008, Gordon, Laumann 

et al. 2014, Laumann, Gordon et al. 2015). Although many of these approaches are 

promising, none of them provide a unified framework that incorporates joint individual- 

and group-level functional network parcellations with a comprehensive correspondence 

across the identified networks.  

Wang et al. parcellated resting-state fMRI data into a number of coherent networks 

using an iterative parcellation approach that requires an initial group-level parcellation as 

a reference (Wang, Buckner et al. 2015). Their approach requires this initiation step and 

thus cannot be used when there is no representative group-level parcellation. Similarly, 

Shen et al. provided a joint individual- and group-level parcellation approach through 

optimization of a rotation function derived from individualized functional connectivity 

(Shen, Tokoglu et al. 2013). This approach, however, requires the same dataset for the 

group- and individual-level parcellations, and thus does not provide a generalizable 

parcellation scheme that can be used across datasets.  

Here we develop a comprehensive parcellation framework that overcomes the above 

concerns through a three-step flexible pipeline. The proposed method exploits “exemplar-

based clustering” that seeks to summarize the massive amount of data using a relatively 

small number of representative exemplars (Dueck and Frey 2007, Badanidiyuru, 

Mirzasoleiman et al. 2014, Mirzasoleiman, Karbasi et al. 2016). Using “exemplars” 

provides a flexible one-to-one mapping of the functional networks across subjects, easing 
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localization of inter-individual variability over the cortex. Moreover, an intuitive notion 

of diminishing returns, known as “submodularity”, is utilized to provide an efficient 

optimization algorithm with provable bounds (Nemhauser, Wolsey et al. 1978). Unlike 

many other individual-level parcellations that are initiated from a group-level parcellation 

scheme to derive the corresponding functional networks for individuals (Zuo, Kelly et al. 

2010, Gordon, Laumann et al. 2015, Wang, Buckner et al. 2015, Gordon, Laumann et al. 

2016), our method moves a step forward by initiating from the individual data. We show 

that this approach has a higher sensitivity to individual variations and thus provides the 

basis for more powerful inferences. We evaluate our parcellation approach using 

clustering validation measures of stability and reproducibility. Finally, we compare our 

method with the two individual-level parcellations mentioned above – Shen. et al. (Shen 

et al., 2013) and Wang et al. (Wang et al., 2015) – in two different aspects: (1) internal 

clustering evaluation, and (2) sensitivity to inter-individual variations (i.e. predictive 

power). Of note, although there exists potentially interesting individual variability in 

functional organization both at the node- and network-levels, the focus of this initial work 

is to delineate the network-level organization. It should be noted, however, that the 

approach described here can be applied to voxel-level data in order to define a node-level 

functional atlas.  

 

 Theory 

2.1 Overview 

Exemplar-based clustering algorithms summarize massive datasets through the selection 

of a relatively small set of representative exemplars. Our proposed algorithm seeks to 
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select K exemplar regions (representing our networks) across the cerebral cortex. The 

clustering algorithm then assigns each of the nodes to one of the exemplars, i.e., one of 

the networks. 

Most techniques for identifying exemplars define an objective function that measures 

the “representativeness” of each set of exemplars with regard to the full dataset. Often, 

these objective functions satisfy an intuitive notion of diminishing returns called 

submodularity (Nemhauser, Wolsey et al. 1978): for instance, if given two sets of 

exemplars S1 and S2 with S1 ⊆ S2, adding a new element to S1 is more beneficial than 

adding it to the super set, S2, as the new element can potentially add more information to 

S1 rather than S2. When using this concept of submodularity, the problem of finding K 

exemplars can be reduced to maximizing a non-negative monotone submodular set 

function subject to a cardinality constraint (i.e., a bound on the number K of elements that 

can be selected) (Krause and Golovin 2012, Mirzasoleiman, Karbasi et al. 2016). Simple 

greedy algorithms can efficiently maximize these objective functions (Nemhauser, 

Wolsey et al. 1978). See (Mirzasoleiman, CH et al. 2016) for recent developments of 

submodular maximization methods. 

In the following, we formally define our submodular function following the work of 

Krause et al. (Krause and Golovin 2012), and define the greedy algorithm, and exemplar-

based clustering. We subsequently present our algorithm and the details of our 

implementation.  

 

2.2 Submodular functions 
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Submodularity is a property of set functions, i.e., functions 𝑓: 21 → 𝑅 that assign each 

subset 𝑆	 ⊆ 𝑉 a value 𝑓(𝑆). Here, 𝑉 is a finite set, commonly called the ground set, and 𝑆 

is a finite subset of 𝑉. The definition of submodularity relies on a notion of discrete 

derivative, also called the marginal gain. An important subclass of submodular functions 

(used in the proposed algorithm) are those which are monotone.  

Definition 1.1 (Discrete derivative) For a set function 𝑓: 21 → 𝑅, 𝑆 ⊆ 𝑉, and 𝑒 ∈ 𝑉, let 

∆𝑓(𝑒|𝑆) ∶= 𝑓(𝑆 ∪ {𝑒}) − 𝑓(𝑆) be the discrete derivative of 𝑓 at 𝑆 with respect to 𝑒. 

Definition 1.2 (Submodularity) A function 𝑓: 21 → 𝑅	is submodular if for every 𝐴 ⊆

𝐵 ⊆ 𝑉 and 𝑒 ∈ 𝑉\𝐵 it holds that ∆(𝑒|𝐴) ≥ ∆(𝑒|𝐵). Meaning that adding an element 𝑒 to 

a set 𝐴 increases the utility at more than (or at least equal to) adding it to 𝐴’s superset, 𝐵, 

suggesting a natural diminishing returns. 

Definition 1.3 (Monotonicity) A function 𝑓 ∶ 	 21 → 𝑅 is monotone if for every 𝐴 ⊆ 𝐵 ⊆

𝑉, 𝑓(𝐴) ≤ 𝑓(𝐵). Equivalently, function 𝑓 is monotone if and only if all its discrete 

derivatives are nonnegative, i.e., for every 𝐴 ⊆ 𝑉 and 𝑒 ∈ 𝑉 it holds that ∆(𝑒|𝐴) ≥ 0. 

 

2.3 The greedy algorithm for optimization of the submodular function 

In general, maximizing a non-negative monotone submodular function subject to a 

cardinality constraint, i.e.,  

 max
2⊆4

𝑓(𝑆) 	𝑠. 𝑡.		|𝑆| ≤ 𝐾, (1) 

is NP-hard (Feige 1998). However, a seminal result of (Nemhauser, Wolsey et al. 

1978) proves that a simple greedy algorithm provides the best approximation (≈ 63%) to 

the optimal solution. In practice, this approximation is significantly closer to the optimal 

solution (see Supplementary Materials and Figure S5 for an empirical evaluation). The 



 

 

 

77 

greedy algorithm starts with an empty set 𝑆! = 0, and at each iteration 𝑖, it selects and 

adds the element {𝑒5∗} ∈ 𝑉 such that the marginal gain is maximized, i.e., 

 𝑒5∗ = argmax
7∈4

𝛥𝑓(𝑒|𝑆59*) ≔ argmax
7∈4

𝑓(𝑆59* ∪ {𝑒}) − 𝑓(𝑆59*), (2) 

 𝑆5 = 𝑆59* ∪ {𝑒5∗}. (3) 

The algorithm continues until the cardinality constraint is reached, i.e., until |𝑆| = 𝐾. 

 

2.4 Exemplar-based clustering 

Exemplar-based clustering provides an approach to summarize the data by introducing a 

set of 𝐾 exemplars that best represents the full dataset. A classic way of identifying such 

exemplars is solving the 𝑘-medoids problem, by minimizing the sum of pairwise 

distances between the elements of the dataset and the exemplars (see Friedman et al. 

(Friedman, Hastie et al. 2001) for more details on k-medoid problems). Specifically, 

assume we are given a dissimilarity function 𝑑:	𝑉 × 𝑉 → 𝑅, where 𝑑 encodes the 

dissimilarities between the elements of the ground set 𝑉. The 𝑘-medoid problem 

minimizes the following loss function: 

 𝐿(𝑆) =
1
|𝑉|bmin

/∈:
𝑑(𝑣, 𝑒)

%∈1

. (4) 

𝐿(𝑆) measures how much information we lose if we represent all the data points in 

each cluster, with its corresponding exemplar. 

By introducing an appropriate auxiliary element 𝑣!, we can turn 𝐿 into a monotone 

submodular function, so that the minimization of (4) is equivalent to the maximization of 

the following monotone submodular function (5), and can be efficiently solved by the 

greedy algorithm: 



 

 

 

78 

 𝑓(𝑆) = 	𝐿(𝑣!) − 	𝐿(𝑆 ∪ 𝑣!). (5) 

Technically, any vector 𝑣! satisfying the following condition can be used as an 

auxiliary exemplar: 

 max
%!∈1

𝑑(𝑣, 𝑣;) ≤ 𝑑(𝑣, 𝑣!),			∀𝑣 ∈ 𝑉\𝑆. (6) 

This condition implies that the distance between the auxiliary element and all of the 

data points must be greater than the pairwise distances between the data points. 

Note that in contrast to the classical clustering algorithms (such as 𝑘-means), the 

exemplar-based clustering is very general in that it does not require the distance function 

𝑑 to be symmetric nor to obey triangle inequality. All it requires for 𝑑 is nonnegativity. 

Here we used the squared Euclidean distance as the dissimilarity function: 

 𝑑(𝑥, 𝑥;) = 	‖𝑥 − 𝑥;‖,. (7) 

Herein, we utilize the submodularity of our utility function further to implement an 

accelerated version of the greedy algorithm, called lazy greedy (Minoux 1978).  

 

2.5 Cortical parcellation algorithm 

In this section, we deploy the aforementioned algorithm to parcellate the cerebellar cortex 

into 𝐾 functional networks. For each individual 𝑗 ∈ {1, … , 𝐽}, we have a matrix 𝑉<×"
> , 

where 𝑁 denotes the number of regions in the brain and 𝑇 represents the number of time 

points. Each region 𝑛 ∈ {1,… ,𝑁} of the brain, forms a vector in a 𝑇-dimensional space, 

denoted as 𝑣?
>. We aim to find 𝐾 exemplar labels 𝑆 = {𝑒*, 𝑒,, … , 𝑒@} whose 

corresponding exemplar set for each individual 𝑗, i.e., 𝑆> = o𝑣/"
> , 𝑣/#

> , … , 𝑣/$
> p ⊆ 𝑉>, 

maximizes a desired utility function. In order to jointly consider the information of each 

individual and the group, we define a natural objective utility function as follows: 
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 𝐹(𝑆) = ∑ 𝑓>(𝑆>)A
>B* , (8) 

where 𝑆	is the exemplar label set and 𝑆> is the set including the corresponding 

exemplar vectors in individual 𝑗. In addition, 𝑓>s𝑆>t is the utility function of individual 𝑗 

defined according to equations (2-5), and 𝐽 is the total number of subjects. Note that 

submodularity is preserved under non-negative linear combination and thus 𝐹(𝑆) remains 

a non-negative monotone submodular function that can similarly be optimized by the 

greedy algorithm. Also note that 𝑓> is a function that is locally defined for each 

individual 𝑗, meaning that it takes the label set 𝑆 = {𝑒5} ∈ {1, … , 𝑁} of  regions and 

considers the corresponding vectors in each individual. The algorithm finally selects the 

𝐾 exemplar labels for which the corresponding exemplar vectors in each individual 

minimize the sum of loss functions over all individuals. After 𝐾 exemplars are obtained 

for each individual, the algorithm assigns each region 𝑛 in individual 𝑗 (i.e. vector 𝑣?
>) to 

the closest exemplar, i.e., 

 𝐸𝑥𝑒𝑚𝑝𝑙𝑎𝑟	s𝑣?
>t = argmin

7%∈:
(𝑣?

> , 𝑣/&
> ). (9) 

Thus, the brain is parcellated into 𝐾 networks each represented by an exemplar. In 

order to obtain the group-level parcellation, we employ a majority vote algorithm over all 

subjects. In other words, region 𝑛 is assigned to network 𝑘 if the majority of individuals 

vote for this assignment. 

Overall, the proposed algorithm operates in three steps. First, the exemplar-search step 

finds the global exemplars over all subjects. Second, the individual-clustering step 

parcellates each individual’s brain by greedily maximizing a utility function, defined 

according to the group data. Third, the group-clustering step takes the majority vote of all 



 

 

 

80 

individual clusters. The pseudocode in Figure 1 shows each step in more detail.  
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Figure 1. Pseudocode explaining the three steps of exemplar-based parcellation. In the first 
step (exemplar-search), K=2, …, 25 exemplars are derived for each individual with a group 
constraint, i.e. by greedily optimizing a nonnegative monotone submodular function defined as 
the summation of the utility function over individuals. In the second step (individual-clustering), 
for each single individual, every node in the cortical area is assigned to its closest exemplar, 
where closeness is defined using a squared Euclidean distance function. Finally, in the third step 
(group-clustering), the group-level parcellation is derived by majority voting over all individual-
level parcellations (i.e. the node-to-network assignment vectors).  
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One significant advantage of this algorithm is that there is a straightforward mapping 

between the parcellation of each individual to each other and to the group, as each 

network is represented by a global exemplar. Thus, we do not require another algorithm 

to retrieve the correspondences. This facilitates direct comparison between individuals 

and with the group. 

 

 Material and methods 

3.1 Participants and processing 

Data were obtained from the 900 subject release dataset in Human Connectome Project 

(HCP) (Van Essen, Smith et al. 2013). Analysis was limited to 825 subjects for which the 

complete scan data were available for each of the two resting states: REST1 and REST2. 

For details of scan parameters, see Uǧurbil et al. (Uğurbil, Xu et al. 2013) and Smith et 

al. (Smith, Beckmann et al. 2013). Starting with the minimally preprocessed HCP data 

(Glasser, Sotiropoulos et al. 2013), further preprocessing steps were performed using 

BioImage Suite (Joshi, Scheinost et al. 2011) and included regressing 12 motion 

parameters (Movement_Regressors_dt.txt), regressing the mean time courses of the white 

matter and cerebrospinal fluid as well as the global signal, removing the linear trend, and 

low pass filtering (as previously described in (Finn, Shen et al. 2015)). We employed a 

functional brain atlas (Shen, Tokoglu et al. 2013) consisting of 188 nodes covering the 

cortex of the brain. This atlas was defined on a separate population of healthy subjects 

(Finn, Shen et al. 2015). 
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3.2 Functional distance matrix 

Time courses from the two resting-state conditions (REST1 and REST2) and the two 

functional runs with opposing phase-encoding directions (left-right, “LR”, and right-left, 

“RL”) were concatenated and further used to generate a ground set consisting of 𝑁 

vectors in 𝑇-dimensional space. All the data points were normalized to a unit norm 

sphere centered at origin, and a point with the norm greater than two was used as the 

auxiliary exemplar (Eq. 6 in the Theory Section 2.4). For each individual, the pairwise 

squared Euclidean distances between the data points were calculated, and a matrix of size 

188 × 188 was obtained. Next, the greedy algorithm was employed to find the best 𝐾 =

{2, 3, … , 25} exemplars according to the algorithm described above. 

 

3.3 Stability and convergence 

We examined the stability and convergence behavior of our group-level parcellation. 

Stability was defined as the robustness of the output to slight perturbations to the input 

(Von Luxburg 2010), which was examined here in terms of the variations both in the 

group size and the selection of subsets of individuals from the larger group. Convergence 

was examined through the rate at which the output parcellation converged to the final 

result as the input merged to span the entire dataset. We started with twenty-five subjects 

and incremented the number of subjects used in the network parcellation in steps of 

twenty-five. At each step 𝑡, we employed the exemplar-search algorithm (part 1 in 

Algorithm) over the set of 25 × 𝑡 subjects, which we refer to as training set herein. Using 

the exemplars derived from the training set, we applied the individual-clustering 

algorithm (part 2 in Algorithm) over both the training set (i.e. 25 × 𝑡 subjects) and the 
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entire dataset (i.e. 825 subjects), obtaining two sets of individual-level parcellations. 

Next, we employed majority voting (part 3 in Algorithm) over both the training set and 

the entire dataset, and then calculated the Hamming distances (Hamming 1950) between 

the group-level parcellation derived from the training set (which here is called the 

perturbed parcellation) and the full parcellation derived from the entire dataset (Figure 3).  

 

3.4 Reproducibility of group-level parcellation 

We investigated whether our proposed method was generalizable across different sets of 

subjects using two different pipelines (Figure 4B). In the first pipeline, the dataset 

consisting of 800 subjects was split into two equal size subsamples, and the three-step 

parcellation algorithm – including exemplar-search, individual-clustering, and group-

clustering – was applied on each half independently (Figure 4B, Right). Finally, the 

overlap between the two group-level parcellation schemes was calculated using the Dice 

coefficient (Dice 1945). The process was repeated 100 times for different permutations of 

subjects (Figure 4A, blue error bars). In the second pipeline, the data set was similarly 

split into two equal size subsets, but this time, a training-testing strategy was utilized. We 

employed the first part of the algorithm (i.e. exemplar-search) over group 1 (referred to as 

the training set). Next, using the exemplars derived from the training set, we ran the rest 

of the algorithm (i.e. individual-clustering and group-clustering) over the individuals in 

group 2 (referred to as the testing set) as well as group 1 (the training set), obtaining two 

group-level parcellation schemes (Figure 4B, Left). The overlaps between the two 

parcellations were computed using the Dice coefficient. The same process was repeated 

100 times for different permutations of subjects (Figure 4A, orange error bars). Note that 
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in the second pipeline, there is a direct one-to-one mapping between the two parcellation 

schemes, through their common exemplars. In other words, all the regions with the same 

exemplar labels, are assigned to the same clusters (networks). This straightforward 

mapping across functional networks at individual-level and group-level is a unique 

advantage of the exemplar-based clustering. It also provides a cross-validation approach 

to the parcellation schemes through training-testing settings. 

 

3.5 Reproducibility of individual-level parcellations across rest sessions 

To investigate the reproducibility of parcellations at the individual-level, we repeated the 

parcellation analyses, this time taking into account the data from REST1 and REST2 scan 

sessions separately. As with the group-level reproducibility analysis, we employed two 

separate pipelines: First, we computed the individualized parcellations for each rest 

session, using the previously computed exemplars that were derived from the joint 

consideration of the two sessions. The advantage of this approach is that it preserves the 

correspondences between the resulting networks for each individual across the two 

sessions (referred to as the global exemplars). In the second pipeline, we recalculated the 

exemplars for the two rest sessions independently, and used them to parcellate the 

individuals within each session. We refer to these as the local exemplars. For each 

pipeline, we calculated the Dice coefficients between the parcellation results of every 

individual in the two rest sessions: REST1 and REST2 (Figure S2). 

 

3.6 Mapping highly variable regions  
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For each node in the cortex, we investigated the number of individuals that voted for the 

appointed network in the group-level parcellation; a measure labeled as F1 (or the 

frequency of the 1st mode). This measure captures the consistency of the node-to-network 

assignments across individuals, and thus , the inverse of F1 (1/F1) could be an indicator 

of the inter-individual variability. Another metric of interest in the literature is the 

frequency of the 2nd mode (known as F2), i.e., the number of occurrences for the second 

most frequent network assignment. To further address the confidence of the node-to-

network-assignments across all individuals, the ratio between F1 and F2 (i.e. F1:F2 ratio) 

was calculated. Similarly, to underscore the variability of regions, the inverse ratio (i.e. 

F2:F1 ratio or F2/F1) was considered. A high value for the inverse F1 and the F2:F1 ratio 

reflects greater variability in the network assignment. For each node, the two inter-

individual variability measures (1/F1, F2/F1) were calculated and summed up over the 

number of networks ranging from K=2 to K=25, then the resulting numbers were scaled 

to the range (0, 100) (Figure 5). 

 

 3.7 Sex-prediction 

To illustrate that this individualized parcellation approach provides meaningful 

information, we next demonstrated a data-driven predictive model based on parcellation 

(i.e. node-to-network assignments) to predict the sex for each individual. We used a 

gradient boosting machine (GBM) with 100 estimators (also known as decision trees) and 

0.05 learning rate (see the code for more details on parameters) in a ten-fold cross-

validated setting (Friedman, Hastie et al. 2001). Each time, we fed the predictive model 

with node-to-network-assignment vectors for the individuals in the training set as 
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features, and their corresponding sex as output. We predicted sex for the unseen fold of 

data across a varying number of networks from K=2 to K=25. The reported accuracies 

are the mean and standard deviations across all ten folds (Figure 6A, blue error bars). To 

confirm that our prediction results were highly significant, we applied a nonparametric 

permutation testing by generating a null distribution via randomly shuffling the outputs 

(i.e. sex) 100 times and running the generated vectors through our predictive model 

(Figure 6A, orange error bars). 

Of note, since we initially defined the network parcellations across all individuals and 

then used the same individuals for the sex prediction, these were not two independent 

samples. It is unlikely that this dependency has confounded the results, for two main 

reasons: first, the parcellation step was employed agnostic to the individuals’ sex. That is, 

the same parcellation algorithm was employed on both male and female subjects, with no 

prior knowledge on their sex. Second, the employed predictive model (GBM) is a non-

parametric model with no sensitivity to the dependency of samples. Nevertheless, we 

tested for the potential biases by employing the parcellation and the prediction steps on 

two independent subsets. In one analysis, we split the entire population into two equal-

size sets (each with 400 subjects) and employed the training-testing framework described 

earlier (see the second pipeline in Method Section 3.4 and Figure 4B [Left]), i.e. defined 

the exemplars on the training set and used those exemplars to parcellate individuals in 

both training and testing sets. We next conducted our predictive analysis by training on 

one set and testing on the other. The accuracies remained significant (Figure S3) despite 

the smaller size of the training set. In another analysis, we employed both the parcellation 

and predictions in a 10-fold cross-validated setting. That is, we divided the entire 
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population into 10 folds. At every step, the exemplars were calculated from the 9 training 

folds and used to parcellate the entire population. A GBM model was trained on the 9 

training folds and tested to predict the sex for the one left-out testing fold. The entire 

procedure was repeated until each fold was left out once. The prediction accuracies 

remained significantly higher than chance (Figure S4). 

A benefit of using gradient boosting machines is that after the decision trees are 

constructed, it is relatively straightforward to retrieve the importance of each feature. 

Importance is explicitly calculated as the number of times that each feature was used to 

make key decisions in the single decision tree, i.e. decisions that improve the 

performance measure. The feature importance is weighted by the number of observations 

within each decision tree, and then averaged across all of the trees within the model. As 

our GBM model was fit with 188 features indicating the network assignment of each 

node, we simply derived the importance of each node in sex identification by assessing 

the corresponding importance attribute. We further scaled the importance scores to the 

range (0, 100) as shown in Figure 7. 

3.8 Comparison with other approaches 

We compared our proposed exemplar-based parcellation algorithm with two well-

established individual-level parcellation methods: (1) our earlier rotation-based 

individual-level parcellation (Shen, Tokoglu et al. 2013) and (2) Wang’s iterative scaling 

individual-level parcellation (Wang, Buckner et al. 2015). Shen’s method had two free 

parameters, α which tunes the smoothing kernel’s standard deviation, and λ, which 

adjusts the level of similarity between individuals and the group. We set α=0.2 and let λ 

take values in the range (0.1-0.6), with smaller numbers representing lower similarity. 
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For the sake of clarity, we only report the results for the two ends of the interval (λ=0.1 

and λ=0.6); similar results were found for other values of λ. For some specific number of 

networks (e.g. K=17, 18) Shen’s algorithm terminated at some lower K values, and these 

were then used instead of the input K. Similarly, we derived the individualized 

parcellations for Wang’s method starting with their K=7 and K=17 group-level 

parcellation schemes (Thomas Yeo, 2011). For their averaging step, we deployed 

different weighting schemes, but the results were highly similar across different 

weighting schemes for the clustering evaluation measures and for sex-prediction analysis. 

Thus, we present results that used standard averaging.   

To quantify the results of the comparison, we used two independent frameworks. In 

the first step, two clustering validation techniques were applied and in the second step, 

the sensitivity of these methods to inter-individual variability was examined through 

comparisons of the predictive power in a sex discrimination analysis. 

We utilized two internal clustering validation measures – the Dunn Index (Dunn 1973) 

and the Davies-Bouldin Index (Davies and Bouldin 1979) – that are commonly reported 

in the literature (Halkidi, Batistakis et al. 2001, Ghosh, De et al. 2007, Saitta, Raphael et 

al. 2007, Ziegler, König et al. 2010, Fichtinger, Martel et al. 2011). Similar to all other 

internal clustering validations, the Dunn and the DB indices utilize the clustered data 

itself to measure compactness and cluster separation. The Dunn index identifies to what 

extent the clustering scheme is successful in maximizing the inter-cluster distance while 

minimizing the intra-cluster distance. For K clusters, the Dunn index is defined as the 

ratio between the minimal inter-cluster distance to the maximal intra-cluster distance, 

according to Eq. 10: 
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where 𝑑(𝑥, 𝑦) is the Euclidean distance between the two vectors 𝑥 and 𝑦. Therefore, 

for a given assignment of clusters, a higher Dunn index indicates better clustering. We 

computed the Dunn index for each individual-level parcellation derived from the three 

different methods, for the number of clusters (networks) varying from K=2 to K=25. The 

Davies-Bouldin index (DB) measures the average similarity between each cluster and its 

most similar one, and is defined according to Eq. 11:  
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with 𝑛5 	the number of points and 𝑐5 the centroid of cluster 𝐶5. Since the objective is to 

obtain clusters with minimum intra-cluster and maximum inter-cluster distances, small 

values for DB are desired. Similarly, the DB indices were calculated using the three 

individual-level parcellations (described above) for the number of clusters (networks) 

ranging from K=2 to K=25. 

Finally, we assessed the predictive power of our proposed model in comparison with 

the two other approaches. We employed a sex-prediction analysis described previously, 

this time using the individual-level parcellations resulting from Shen’s and Wang’s 

algorithm. We calculated the accuracies for the number of networks varying in the range 

K=2 to K=25.  

We note here that there is a subtle change in the accuracy results each time the 

algorithm is executed. This is due to the randomness of ten-fold-cross-validation and also 

the initial state of the GBM. In the comparison of different methods, we fixed all these 
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parameters and thus the result is for the same initial state and the same assignments of 

data points to the folds. 

 

3.9 Implementation 

The parcellation code was written in MATLAB. Clustering was performed on a 

workstation with 64 GB of RAM, and a 3.4 GHz Intel Xeon processor with 24 cores. Run 

time for our proposed method with K=25 was 442.15 second for the exemplar-search, 

1.95 second for the individual-clustering, and 0.22 second for the group-clustering. 

Predictive analysis code was written in Python using scikit-learn library (Pedregosa, 

Varoquaux et al. 2011) 

 

 Results 

4.1 Visualization of parcellations as a function of the number of networks 

One advantage of using the greedy algorithm to solve the optimization of our submodular 

function is that it provides a hierarchy of nested clusters (through defining the new 

exemplars while maintaining the older ones) and hence enables an illustrative 

visualization for different granularities/resolutions as the number of networks is gradually 

incremented from K=2 to K=25. At K=2, the brain is divided into two subnetworks that 

are associated with default mode network (DMN) – which is known as the task-negative 

network – and the rest of the brain, which attributes to the task-positive network. At 

K=11, many canonical networks (including the DMN, frontoparietal network (FPN), and 

sensorimotor network (SMN)) are observable (Figure 2). For K>11 the changes are subtle 

and more difficult to observe (Figure S1). 
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Figure 2. The group-level parcellation schemes for the number of networks ranging from 
K=2 to K=25. At K=2, the brain is roughly divided into the default mode network (DMN) and 
task-positive network. As K is increased, the greedy algorithm discovers new exemplars while 
preserving the former ones, and hence parcellates the brain in a hierarchical setting. For example, 
at K=3, the visual network is separated from the DMN and task-positive network. When K is 
increased to K=11, many canonical networks (including the DMN, frontoparietal network (FPN), 
and sensorimotor network (SMN)) are observable. K=25 was the finest resolution parcellation 
derived here. For K>11 the changes are subtle and more difficult to observe (Figure S1). 
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4.2 Stability and convergence of group-level parcellation as a function of group size 

For all numbers of networks, increasing the number of subjects in the training set (on 

average) decreases the distance between the perturbed parcellation, created with a 

subsample of subjects, and the final parcellation, created with all subjects (Figure 3). The 

decrease in the error bars indicates that the distance between the perturbed parcellations 

resulting from random selection (of the same number) of subjects is also decaying. These 

findings suggest the algorithm converges to the final solution as the input expands to the 

entire set. Furthermore, for any number of networks, the average distance between the 

perturbed and the final parcellation is relatively small: when only using 25 subjects, the 

perturbed parcellation exhibited an average of 16% difference (i.e. 84% overlap) with the 

final parcellation. These findings suggest the stability of the algorithm to perturbations to 

the size of the input and to the selection of the subjects. That the exemplars derived from 

a relatively small portion of dataset produce parcellations highly similar to the final 

parcellation scheme (with 84% overlap on average) is a promising result with non-trivial 

implications for cross-dataset validations. 
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Figure 3. Stability and convergence of the group-level parcellation algorithm as a functional 
of group size and individual selection. For each number of networks taking even values in the 
range K=2, …, 25, the Hamming distance between the two parcellation schemes is displayed: 1) 
the group-level parcellation derived from the training set (that is a portion of the full dataset) and 
2) the group-level parcellation derived by considering the entire dataset (with 825 subjects). On 
the x-axis, the number of subjects in the training set is displayed. On the y-axis the Hamming 
distance (i.e. the number of network differences in the node-to-network assignment vectors) is 
displayed. Error bars correspond to the variations resulting from 100 permutations for the 
selection of subjects for the training set. The model is stable to the variation in the group size as 
the average difference between the perturbed parcellation using a subset of the subjects and the 
final parcellation using all the subjects is bounded and less than 30 (16% of the full vector with 
188 nodes). The model converges to the final solution with a general decaying rate both in the 
average distance between the perturbed and the final parcellations, and in the error bar lengths. 
Error bars are proxy of the distances between perturbed parcellations using the same number of 
subjects selected from the entire dataset over 100 permutations. 
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4.3 Reproducibility of group-level parcellations 

Using two non-overlapping subsets, the Dice coefficients between the parcellation results 

of group 1 and group 2 are depicted in Figure 4A (blue error bars). For all number of 

networks, there is on average more than 70% overlap between the two parcellations with 

the overlap generally greater than 80%. Using a training-testing replication method, the 

Dice coefficients between the training and testing group’s parcellation schemes are 

depicted in Figure 4A (orange error bars). On average, the two parcellations have 

approximately 96% overlapping occurrences. As anticipated, the Dice coefficients for the 

second pipeline are significantly higher than the first, in part due to having common 

exemplars.  

  



 

 

 

96 

 

 

 
Figure 4. Reproducibility of the group-level parcellation measured by the Dice coefficient. 
A) Dice coefficients between the group-level parcellation of two equal-size sets (with 400 
subjects). The reproducibility is examined by two different pipelines shown in part B. The colors 
match between the error bars (part A) and the diagrams (part B). The blue error bars represent the 
Dice coefficient between the parcellations derived by running the entire three-step algorithm over 
each subset (group 1 and group 2) separately, as displayed by the right (blue) diagram in part B. 
The orange error bars show the Dice coefficient between the two group-level parcellations with 
the same exemplars (derived from group 1). Due to having a setting similar to training-testing 
validation, group 1 is called train 1 here and group 2 is called test 2. It corresponds to the left 
(orange) diagram in part B. B) The two pipelines for addressing the reproducibility of the group-
level parcellation algorithm. The Dice coefficient between the parcellation outcomes of the left 
diagram is depicted in orange, and the corresponding measure for the parcellation of the right 
diagram is depicted in blue in part A. 
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4.4 Reproducibility of individual-level parcellations across rest sessions 

The Dice coefficients between each individual’s parcellations across the two rest sessions 

are depicted in Figure S2. The orange bars correspond to the analysis with global 

exemplars (across the two sessions). The blue bars display the comparison result using 

local session-specific exemplars. There is on average 72% overlap between the 

parcellation results across the two sessions, using the global exemplars. This number 

decreases to 63% when employing the local exemplars. We note that reliability of 

individual parcellations across different sessions is subject to various factors including 

system noise, physiological noise, and intrinsic cognitive processes (Krüger and Glover 

2001, Bennett and Miller 2010). Thus, the reliability of the parcellation results could be 

confounded by factors other than the specific parcellation algorithm employed, and hence 

warrants further investigation. 

 

4.5 Inter-individual variability of individual-level parcellations 

Figure 5 displays the sorted distribution of inter-individual variability (in node-to-

network assignments) across nodes, using two measure of variability: 1/F1 (Figure 5A) 

and F2/F1 (Figure 5C). It suggests that there are regions with relatively high values for 

both measures summed across all numbers of networks. These regions, that follow 

relatively similar patterns for 1/F1 and F2/F1 across all numbers of networks, display 

high variation, and lower consensus, in their network assignments between the 

individual- and the group-level parcellation. These regions are predominantly localized in 

higher-order association cortices in the frontal, parietal and temporal lobes (Figure 5B, 

D). In particular, the frontoparietal network, default mode network, and anterior cingulate 
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cortex display high 1/F1 and F2/F1 scores. On the contrary, primary-sensory regions, 

including the visual network, sensorimotor network, and medial temporal lobe display 

relatively lower 1/F1 and F2/F1 values. These latter regions demonstrate a higher 

consistency between the individualized and the group-level parcellation.  
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Figure 5. Inter-individual variability measured by the 1st and 2nd votes in the majority 
voting. A) The inverse F1 is displayed for all the cortical nodes in the brain, sorted from high to 
low. For all numbers of networks (K=2, …, 25), inverse F1 measures are collapsed, scaled, and 
depicted in a barplot. As F1 measures the number of individuals who voted for the group-vote 
node-to-network assignment, the inverse F1 is a measure of variability between individuals and 
the group, with a higher measure indicating higher variability and lower confidence. B) The 
inverse F1 depicted on the brain after summing over all numbers of networks. C) The ratio 
between the second (F2) and the first (F1) vote for the node-to-network assignments is displayed 
for all cortical nodes in the brain, sorted from high to low. Similarly, the F2:F1 ratio is a measure 
of variability across individuals, as a high F1 and a low F2 corresponds to a confident network 
assignment reproduced across individuals. The barplot displays the corresponding measure for all 
numbers of networks (K = 2, …, 25) stacked on top of each other and scaled to the range (0,100). 
D) F2:F1 ratio depicted on the brain after summing over all numbers of networks. The higher-
order association areas in the frontal, parietal and temporal lobes display higher inverse F1 and 
F2:F1 ratio values compared to primary-sensory areas.  
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4.6 Sex-predictions 

Figure 6A displays the sex prediction accuracies for a range of network numbers (K=2, 

…, 25) using gradient boosting machine (GBM) as a classifier. The accuracies are 

reported as the mean and standard deviation across all folds (blue bars). The accuracies 

for the null model are also depicted (orange bars). We observe that the model predicts sex 

for an unseen individual with the average accuracies ranging from 61% for K=2 to 70% 

for K=22, with the maximum of 75% for K=22. These reported accuracies are 

significantly higher than random accuracies (p-value<1e-10), for all numbers of networks 

even as low as K=2, suggesting meaningful information is stored in the individualized 

parcellations. 
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Figure 6. Sex prediction accuracies using parcellation schemes as features, for the numbers 
of networks from K=2 to K=25. A) The sex prediction accuracies for a 10-fold cross-validation 
using gradient boosting machine (GBM) as the classifier. The classifier is fed with the node-to-
network assignment vectors (with 188 elements) as features and a binary output (male vs. female) 
is predicted for an unseen fold of subjects. The mean and standard deviation across all folds are 
depicted in blue error bars. To determine the significance of our predictive model, the accuracies 
derived from the null distributions are also depicted in orange error bars. B) 2-tailed t-test 
comparison of the head motion between the two sex groups. There are no significant differences 
in head motion between female (N=458, m=8.9e-02, sd=3.41e-02) and male (N=367, m=8.8e-02, 
sd=3.55e-02) subjects (two-tailed t-test: t(823) = 0.47, p = 0.64).  
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We also tested for differences in head motion between the two sex groups (Figure 6B), 

as motion could be a confound for our predictive analysis. We calculated the average 

frame-to-frame displacement from the Movement_RelativeRMS.txt for each run and 

averaged over the 4 runs. Using two-tailed t-tests, there were no significant differences in 

head motion between female (N=458, m=8.9e-02, sd=3.41e-02) and male (N=367, 

m=8.8e-02, sd=3.55e-02) subjects (two-tailed t-test: t(823) = 0.47, p = 0.64) (Figure 6B). 

To illustrate which regions were the most different between females and males, we 

utilized the “feature importance” attribute from gradient boosting machine classifier. 

Figure 7A illustrates the sorted distribution of the importance scores for all the features 

used for classification, that is a vector of 188 cortical regions. We observe that regions in 

the anterior and posterior cingulate cortex, precuneus, superior parietal lobule, superior 

frontal gyrus, parahippocampal gyrus and inferior temporal gyrus (including anterior 

temporal pole) show relatively high importance scores (Figure 7B). These regions, 

predominantly located in the default mode network (DMN) and the frontoparietal 

network (FPN), have been consistently associated with sex differences in the literature 

(Biswal, Mennes et al. 2010, Scheinost, Finn et al. 2015). 
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Figure 7. Node importance in the sex-discrimination predictive model. A) The sorted 
distribution of node importances in discriminating sex based on the parcellation schemes. The 
importance is derived from the “feature importance” attribute of the GBM sex classifier and 
scaled to the range (0,100). B) The feature importance measures depicted on the brain after 
summing up over all numbers of networks. Regions in the anterior and posterior cingulate cortex, 
precuneus, superior parietal lobule, superior frontal gyrus, parahippocampal gyrus and inferior 
temporal gyrus have relatively high importance scores.  
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4.7 Comparison with other methods 

Figure 8 displays the clustering evaluation results from three methods for varying number 

of networks, from K=2 to K=25 (Dunn Index: Figure 8A; DB index: Figure 8B). Figure 

8A (Left) reports the Dunn index for the exemplar-based and Shen parcellation for even 

Ks. Figure 8A (Right) compares the same measure among all three parcellation 

approaches (exemplar-based, Shen, and Wang) for K=7, 17. Higher values of Dunn index 

indicate a better clustering algorithm, with larger intra-cluster and smaller inter-cluster 

similarities. Figure 8B (Left) depicts the DB index for the exemplar-based and Shen’s 

approach for even Ks. Figure 8B (Right) displays the DB index for all three methods for 

K=7 and K=17. By definition, lower values for the DB index indicate a better clustering 

algorithm. These results suggest that our proposed exemplar-based algorithm is able to 

cohesively parcellate the brain for each individual, specifically for larger values of K.  

  



 

 

 

105 

 

 

 
Figure 8. Comparison of clustering evaluation measures (the Dunn and the Davies-Bouldin 
(DB) indices) across the three methods. A) The comparison of Dunn index between the 
exemplar-based method and Shen’s approach for even values of K=2, …, 24 (Left), and the 
comparison over all three methods for K=7 and K=17 (Right). A higher Dunn index represents 
higher clustering quality with more compactness within clusters and more separation between 
clusters. B) The comparison of DB index between the exemplar-based method and Shen’s 
approach for even values of K=2, …, 24 (Left) and the comparison over all three methods for 
K=7 and K=17 (Right). A lower DB index indicates a higher clustering quality.  
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In the second step of comparison, we seek to address the model’s predictive power in 

a sex discrimination analysis, using a GBM classifier. Figure 9 (Left) displays the 

classification accuracies (the mean and standard deviation across all folds) for exemplar-

based parcellation and Shen’s method, with the number of networks ranging from K=2 to 

K=24, only taking even values. Figure 9 (Right) compares the three methods for K=7 and 

K=17. 
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Figure 9. Comparison of the models’ ability to preserve the inter-individual variability as 
measured by sex-prediction accuracies. The individual-level parcellation schemes derived from 
each model are separately fed to the GBM classifier. The classification accuracies (the mean and 
standard deviation across all folds) for exemplar-based parcellation and Shen’s method are 
displayed with the numbers of networks ranging from K=2 to K=24, taking even values (Left). 
The classification accuracies for all three methods are displayed for K=7 and K=17 (Right). 
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 Discussion 

A novel algorithm has been introduced here that utilizes submodular optimization to 

parcellate the cerebral cortex into functional networks at both the group- and the 

individual-levels. At the group-level, the proposed algorithm has favorable stability, 

convergence, and replicability properties. At the individual-level, regions of high 

variability in parcellations overlaps with known regions of high inter-individual 

variability in functional connectivity and parcellation. We showed that our algorithm 

performs well on internal clustering validation measures and more importantly it 

eliminates the cross-subject correspondence problem for a group when parcellating 

individuals. Finally, using only the individual differences in network parcellation vectors, 

we built a predictive model using a ten-fold cross-validated framework that predicts sex 

for the left out subjects with greater than 70% accuracy. This finding that network 

definitions are sex specific suggests that network studies need to take sex into account 

and that the same network should not be applied to the population as a whole. These 

prediction results show the benefit of individual-level parcellation for extracting 

additional information that would otherwise be missed by simply using a full group-level 

parcellation.   

 

5.1 Exemplar-based clustering for individual network-level parcellation 

Exemplar-based clustering algorithms have been successfully applied in a wide variety of 

data-mining applications. Exemplar-based approaches are conceptually similar to 

clustering methods such as k-means where we aim to find a set of representative points 

that best fit the data as a whole. Although k-means algorithms yield satisfactory results 
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for problems with a small number of clusters, they generally suffer from sensitivity to the 

initialization (also called seeding). As the k-means cost function is highly non-convex, 

the commonly used iterative algorithms converge to local optima depending on the 

initialization. One key difference between the exemplar-based methods and k-means is 

that the former restricts the selection of the representative points to the actual observed 

data points. By doing so, instead of minimizing a continuous loss function, we maximize 

a discrete submodular function for which the classical greedy algorithm provides the best 

approximation to the optimal solution. Note that in general there are exponentially many 

possibilities. However, submodularity allows us to find a near-optimal solution in linear 

time (Mirzasoleiman, Badanidiyuru et al. 2015). In fact, exemplar-based clustering is 

empirically more robust to noise and outliers than k-means methods or its close variants 

such as Wang’s iterative brain parcellation (Wang, Buckner et al. 2015). There are other 

variations of k-means that include soft assignment of nodes to clusters, such as fuzzy c-

means (FCM) (Bezdek 2013). Similarly, the proposed exemplar-based approach could be 

extended to incorporate probabilistic assignment of nodes to networks, where the 

probability of assigning a node to a network is proportional to the inverse distance of the 

node to the corresponding exemplar. Finally, the greedy algorithm smoothly splits the old 

networks, similar to hierarchical clustering methods. This is in contrast to our earlier 

work (Shen, Tokoglu et al. 2013) where for each value of K, a different network is 

proposed without considering correspondences. 

 

5.2 Comparison of algorithms for individual-level networks 
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We compared our exemplar-based parcellation with two other algorithms for delineating 

individual-level networks: Shen’s rotation based algorithm (Shen, Tokoglu et al. 2013) 

and Wang’s iterative scaling algorithm (Wang, Buckner et al. 2015). These two methods 

take contrasting approaches from each other to define individual-level networks, leading 

to different strengths and limitations. Shen’s method assumes that the entire dataset is 

accessible to jointly create new group- and individual-level networks. This method is 

well-suited for studies where the network structure of the current population is not 

applicable for preexisting parcellations and a new parcellation must be created. However, 

this method may give different group-level networks for each study, and thus a lack of 

one-to-one correspondence between studies. Alternatively, Wang’s method assumes a 

group-level parcellation can be modified to fit an individual’s networks with limited 

changes to the gross topology of the group-level networks. This algorithm is well-suited 

for many studies where a preexisting group-level parcellation is a reasonable assumption. 

However, if an individual’s networks differ from the group-level parcellation such as in 

the case of brain tumors or other pathology (Ghumman, Fortin et al. 2016), it is not clear 

how well this algorithm will perform. Given these limitations, neither approach can 

generalize to multiple applications. In contrast, our exemplar-based parcellation 

algorithm can be used to accomplish either of these purposes. We show our algorithm’s 

ability to find exemplars and parcellate individual-level networks in the main analysis 

(Figure 2 and 4) and to find individual-level networks given a set of exemplars in the 

split-half analysis (Figure 3 and 4). In this sense, our algorithm generalizes these 

contrasting approaches.  
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5.3 The need for individualized networks 

Our finding that individual-level parcellations can predict sex demonstrates a problem of 

group-level parcellations. As the sex prediction relies only on network organization (not 

the connectivity based on these networks, as reported in Satterthwaite et al. 

(Satterthwaite, Wolf et al. 2015)), these results show that important information can be 

missed with group-level parcellations. If a basic characteristic such as sex in a cohort of 

healthy controls of a similar age, it is reasonable to assume that other characteristics 

linked to connectivity such as age (Hampson, Tokoglu et al. 2012), cognition (Finn, Shen 

et al. 2015, Smith, Nichols et al. 2015, Rosenberg, Finn et al. 2016), and neuropsychiatric 

diagnosis (Fornito and Harrison 2012) could also show different individual-level 

networks. Overall, this finding suggests the need for individual-level parcellation 

algorithms, like our approach, to address individual differences, while maintaining a one-

to-one correspondence of networks across subjects.   

 

5.4 Localizing inter-individual variability 

Our findings suggest that the greatest inter-individual variability in network organization 

is located in limbic, parietal, and prefrontal regions (Figure 5). These findings are 

consistent with the previous studies that have examined inter-individual variability in 

connectivity (Mueller, Wang et al. 2013, Miranda-Dominguez, Mills et al. 2014, Finn, 

Shen et al. 2015, Mejia, Nebel et al. 2016), and parcellations (Gordon, Laumann et al. 

2015, Laumann, Gordon et al. 2015, Wang, Buckner et al. 2015). Accumulating evidence 

suggests that the neural systems subserving higher-order association cortices display 

more inter-individual variability in their connectivity profiles than those in sensorimotor 
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regions (Frost and Goebel 2012, Mueller, Wang et al. 2013). These regions further match 

with maps of evolutionary cortical expansion (Zilles, Armstrong et al. 1988) and long-

range integration and regional segregation (Sepulcre, Liu et al. 2010), whose reflection 

on parcellation is expected. 

 

5.5 Sex differences 

Recent neuroimaging studies have reported sex differences in functional connectivity 

(Kilpatrick, Zald et al. 2006, Biswal, Mennes et al. 2010, Scheinost, Finn et al. 2015, 

Zhang, Cahill et al. 2016). We observed that regions in the anterior and posterior 

cingulate cortex, precuneus, superior parietal lobule, superior frontal gyrus, 

parahippocampal gyrus and inferior temporal gyrus exhibited relatively high importance 

scores. These regions, predominantly located in DMN and FPN, have been reported to 

display sex differences (Biswal, Mennes et al. 2010, Scheinost, Finn et al. 2015). These 

regions have also been consistently identified as functional hubs in the brain (Zuo, 

Ehmke et al. 2012, van den Heuvel and Sporns 2013), showing a high density of 

connections. When taken together, these observations suggest that functional hubs exhibit 

different network organization in males and females, consistent with previous studies 

(Tomasi and Volkow 2012).  

Note, however, that the main focus of the presented analysis was not to demonstrate 

sex differences in the functional organization of the brain. This could have been achieved 

using more informative features, such as functional connectivity matrices with 

information regarding all edges. Nor was it to distinguish between the two sex groups. 

Instead, the sex prediction was used to demonstrate that group effects can lead to 
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different network definitions and thus patient versus control or patient group comparisons 

should not assume that the use of global network definitions is appropriate. As an aside, it 

is also interesting to note that given the minimal information stored in the functional 

node-to-network assignment vectors, composed of all integer values (1, 2, … K), it is 

impressive that such group effects can be detected. 

 

5.6 Strengths and limitations 

This study has several strengths. Unlike many other parcellation algorithms (Beckmann, 

DeLuca et al. 2005, Power, Cohen et al. 2011, Thomas Yeo, Krienen et al. 2011, Wang, 

Buckner et al. 2015, Gordon, Laumann et al. 2016), our proposed approach does not 

depend on thresholds, or the selection of hyper parameters. Our method provides a one-

to-one mapping across subjects and no additional algorithms are needed to map network 

correspondences. However, there are several limitations that should be noted. Individual-

level networks could be influenced by individual differences in physiological noise 

(Rogers, Morgan et al. 2007) and head motion (Van Dijk, Sabuncu et al. 2012). As males 

and females did not show differences in motion, our network differences as a function of 

sex are unlikely due to motion.  

In this work, the starting point was a 188-node functional atlas. It would be quite 

reasonable to begin, instead, at the voxel-level as individual node definitions may differ 

between the sexes whereas our starting point assumes they are the same. Starting at the 

node level reduces the computational burden because the process of defining nodes 

already provides a large dimensionality reduction step. Moreover, as the atlas was 

derived from an independent dataset, this can also reduce the chance of overfitting the 
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data of interest. On the other hand, it may suffer from the propagation of registration 

noise and misalignment of the preexisting atlas. The approach described above, however, 

is applicable at the voxel-level and this can therefore be used for node definitions at the 

individual-level while maintaining cross-subject correspondences.  

Even though we started from a node-level atlas, the number of features used by the 

predictive model (d=188) was relatively high comparing to the number of samples 

(n=825). This may lead to a larger variance in the model and thus make it harder to 

generalize over novel subjects. We deliberately did not reduce the number of features, in 

order to achieve higher accuracies, as we sought to employ a fully transparent and data-

driven analysis of the feature space with all the nodes included as features. In this regard, 

we also did not force any prior knowledge on the importance of nodes. Nevertheless, the 

achieved accuracies are comparable (or higher for some Ks) to the previous models that 

have used full functional connectivity data (Satterthwaite, Wolf et al. 2015).  

 

 Conclusion 

 In conclusion, we present a novel algorithm to parcellate individual-level networks using 

exemplar-based clustering with submodularity optimization. The algorithm compares 

favorably with existing algorithms when parcellating nodes into individual-level 

networks while maintaining cross-subject correspondences. Using networks defined at 

the individual-level, we demonstrated that brain network organization differs between the 

sexes as indicated by our ability to predict sex with 70% accuracy. The sex prediction 

finding illustrates that individual parcellation of functional networks can reveal 

subgroups in a population and suggests that the use of a global network parcellation may 
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overlook fundamental differences in network organization in subgroups. This is a 

particularly important point to consider in studies comparing patients versus controls for 

example or even patient subgroups. Network organization may differ between individuals 

and global configurations should not be assumed. 
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 Supplemental Materials 

While the theoretical lower bound for the greedy algorithm is ≈ 63% of the optimal 

solution, in practice, it provides a solution significantly closer to the optimal one. To 

demonstrate this, we employed an empirical evaluation. We calculated a data-driven 

upper bound for the optimal solution, following the equations below: 

 𝑓(𝑆∗) ≤ 𝑓(𝑆∗ ∪ 𝑆)) (1) 

 
= 𝑓(𝑆)) +	b𝛥

)

>B*

(𝑣>∗|𝑆) ∪ o𝑣*∗, 𝑣,∗, … , 𝑣>9*∗ p) (2) 

 ≤ 𝑓(𝑆)) + b 𝑓(𝑣|𝑆))
%∈:∗

	 (3) 

 ≤ 𝑓(𝑆)) + b 𝑓(𝑣|𝑆))
%∈1\:(

, (4) 

where 𝑆∗ is the optimal exemplar set, and 𝑆) is the exemplar set calculated by the 

greedy algorithm. Equation 5 provides an upper bound for the optimum solution, 𝑓(𝑆∗). 

Figure S5 compares the upper bound with the utility function derived from the greedy 

algorithm. This demonstrates that the greedy algorithm is significantly closer to the upper 

bound than to the 63% of the optimal solution, as provided in theory. 
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Figure S1. The group-level parcellation schemes for the numbers of networks ranging from 
K = 12 to K=24. As the number of networks increases, the larger networks tend to split and 
slightly rearrange to accommodate new ones, similar to a hierarchical nested scheme. 
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Figure S2. Reproducibility of the individual-level parcellations across the two rest sessions 
(REST1 and REST2) measured by the Dice coefficient. Dice coefficients between the 
individualized parcellations derived from the two rest sessions. The reproducibility is examined 
by two different pipelines. The orange error bars display the Dice coefficient between the 
individualized parcellations derived from the same global exemplars (derived from concatenation 
of REST1 and REST2, as explained in Method Section 3.2). The blue error bars represent the 
Dice coefficient between the parcellations derived by running the entire three-step algorithm 
within each rest session separately. The error bars display the standard deviation across subjects. 
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Figure S3. Sex prediction accuracies using parcellation schemes derived from two non-
overlapping subsets of 400 subjects. Two sets of individualized parcellations are derived using 
two non-overlapping subsets (training set and testing set, each with 400 subjects). Exemplars are 
derived from the training set and used to parcellate the entire dataset (comprised of both training 
and testing sets). A GBM classifier is trained on the training set using the parcellation schemes 
(i.e. node-to-network assignment vectors) as features. Next, it is tested on the testing set. The 
entire process is repeated 100 times and the prediction accuracies for K=2, …, 25 are reported (as 
the means and standard deviations over 100 runs). 
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Figure S4. Sex prediction accuracies using parcellation schemes, derived from a 10-fold 
cross-validation. The sex prediction accuracies are reported for a 10-fold cross-validated 
parcellation scheme using gradient boosting machine (GBM) as the classifier. The entire 
population is divided into 10 folds. At every step, exemplars were calculated from 9 folds (the 
training set) and used to parcellate all the subjects. Next, a GBM classifier is trained on the 9 
training folds and tested to predict the sex for the one left-out testing fold. The GBM classifier is 
fed with the node-to-network assignment vectors (with 188 elements) as features and a binary 
output (male vs. female) is predicted for an unseen fold of subjects. The entire procedure is 
repeated until each fold is left out once. The mean and standard deviation across all folds are 
depicted in blue error bars. To determine the significance of predictions, the accuracies derived 
from the null distributions are also depicted in orange error bars. 
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Figure S5. Comparison of the greedy algorithm and the data-driven upper bound for the 
optimal solution. While in theory the greedy algorithm provides a ≈ 63% approximation of the 
optimal solution, this is only a lower bound on the greedy algorithm’s performance. Here, we 
empirically show that the greedy solution (blue line) is considerably close to the optimal 
solution’s upper bound (orange line), calculated from the data. 

 

 



Chapter 4: Individualized functional networks reconfigure with 

cognitive state 

 

 

 

Abstract 

There is extensive evidence that functional organization of the human brain varies 

dynamically as the brain switches between task demands, or cognitive states. This 

functional organization also varies across subjects, even when engaged in similar tasks. 

To date, the network organization of the brain has been considered static. In this work we 

use fMRI data obtained across multiple cognitive states (task-evoked and rest conditions) 

and across multiple subjects, to measure state- and subject-specific functional network 

parcellation (the assignment of nodes to networks). Our parcellation approach provides a 

measure of how node-to-network assignment (NNA) changes across states and across 

subjects. We demonstrate that the brain’s functional networks are not spatially fixed, but 

that many nodes change their network membership as a function of cognitive state. Such 

reconfigurations are highly robust and reliable to the extent that they can be used to 

predict cognitive state with up to 97% accuracy.   
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 Introduction 

The human brain is organized into functional networks that reflect the coordinated effort 

of individual subunits (or nodes) to execute specific functions (Finn et al., 2015; Power et 

al., 2011; Smith et al., 2009; Thomas Yeo et al., 2011). Previous studies have identified 

5-20 networks during the resting-state that putatively represent the “intrinsic” functional 

organization of the brain (Meunier et al., 2009; Power et al., 2011; Smith et al., 2012; 

Thomas Yeo et al., 2011). These networks have been associated with a wide range of 

cognitive tasks (Dosenbach et al., 2007; Grayson et al., 2014; Laird et al., 2011) and 

alterations in the spatial organization of these networks have been linked to clinical 

disorders (Greicius et al., 2004; Stern et al., 2012; van Eimeren et al., 2009). Increasingly, 

there is evidence that the functional organization of the brain is fluid and reconfigures 

with task demands or specific cognitive states (Cole et al., 2014; Krienen et al., 2014; 

Mennes et al., 2012). Understanding network reconfiguration across different task states 

is a key step towards understanding the functional organization of the brain.  

Recent studies have made significant progress in defining state-evoked changes in 

functional connectivity elicited by task performance (Cole et al., 2010; Cole et al., 2014; 

Cole et al., 2016; Cole et al., 2013; Davison et al., 2015; Di et al., 2013; Krienen et al., 

2014; Shine et al., 2016; Telesford et al., 2016). However, none of these studies explicitly 

examined the possibility that the spatial topography of functional networks reconfigure, 

with most studies explicitly assuming that the networks remain spatially unchanged 

across tasks (Cole et al., 2014; Cole et al., 2016; Gratton et al., 2018; Telesford et al., 

2016). Such analyses have been primarily restricted to investigating differences in 

connectivity between networks, and not whether networks spatially reconfigure across 
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tasks. Changes in functional network spatial topography, however, could be driven by 

changes in functional connectivity across different tasks. Another line of research takes a 

more abstract perspective by computing global network measures (such as modularity 

and participation coefficient) and comparing these measures across different states 

(Bassett et al., 2011; Cohen and D'Esposito, 2016; Di et al., 2013; Kinnison et al., 2012; 

Mohr et al., 2016; Shine et al., 2016). While such approaches address the modular 

reconfiguration of the brain as a whole, they do not quantify how or whether the same 

networks change across states. Such studies also typically define a new set of networks 

(ranging between 3 to 7) for every state, whose correspondence to the putative resting-

state networks is unclear (Bassett et al., 2011; Di et al., 2013; Kinnison et al., 2012; 

Mattar et al., 2015a). Finally, many studies do not directly examine cross-subject 

variations in network reorganization (Krienen et al., 2014), or consider cross-subject and 

cross-state changes as similar notions for defining reorganization (Mattar et al., 2015b). 

However, the functional organization of the brain varies significantly across subjects, 

yielding large individual differences in network definitions (Gordon et al., 2017a; Gordon 

et al., 2017b). In this work, we account for both cross-subject and cross-state variability 

in functional network organization demonstrating the dynamic flexibility of this 

organization. 

A new approach is introduced to dynamically map node membership in functional 

networks across task-evoked and resting states, and across individuals. We apply our 

recently developed exemplar-based parcellation method (Salehi et al., 2018) to assign a 

set of pre-defined nodes to individualized, state-specific functional networks, while 

preserving precise network correspondences across subjects and states. We demonstrate 
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that resting-state networks reconfigure as nodes change their allegiance in specific 

manners according to the task condition or cognitive state.  We demonstrate that the 

observed state-evoked reconfiguration of networks is reliable, through the use of a cross-

validated predictive model that decodes the cognitive state of unseen subjects based on 

their node-to-network assignments (NNA). Elucidating network configurations across a 

number of tasks reveals three classes of nodes based on the stability of these node-to-

network assignments: 1) steady nodes that exhibit the same network assignment across 

states and subjects; 2) flexible nodes that change their network assignment across states, 

but are consistent across subjects, and 3) transient nodes that change their network 

assignment across both subjects and states. To give behavioral context for these node 

classes, we use a large-scale meta-analysis of task activation studies from BrainMap to 

assign behavioral domains and paradigm classes to each node. Together, our findings 

provide a comprehensive view of how large-scale functional networks (as putatively 

defined during resting-state) are modulated by task performance. If networks are to be 

defined via functional clustering of nodes, then it is essential to consider that such 

definitions are fluid and cognitive-state dependent.  
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 Materials and Methods 

2.1 Participants and processing 

Functional MRI data from the Human Connectome Project (HCP) (Van Essen et al., 

2013) were analyzed. We limited the analysis to 718 subjects for which data were 

available for all nine functional conditions (hereafter, “states”): MOTOR, GAMBLING, 

WORKING MEMORY (WM), EMOTIONAL, LANGUAGE, RELATIONAL, 

SOCIAL, REST1, and REST2. For details of scan parameters, see (Uğurbil et al., 2013) 

and (Smith et al., 2013). Starting with the minimally preprocessed HCP data (Glasser et 

al., 2013), further preprocessing steps were performed using BioImage Suite (Joshi et al., 

2011) and included regressing 12 motion parameters (Movement_Regressors_dt.txt), 

regressing the mean time courses of the white matter and cerebro-spinal fluid as well as 

the global signal, removing the linear trend, and low pass filtering (as previously 

described in (Finn et al., 2015)).  

 

2.2 Functional distance and functional connectivity matrices 

Functional matrices were assessed using a functional brain atlas (Shen et al., 2013) 

consisting of 268 nodes covering the whole brain; this atlas was defined using resting-

state data from a separate population of healthy subjects (Finn et al., 2015). For every 

subject in each functional condition, time courses for the two functional runs with 

opposing phase-encoding directions (left-right, “LR”, and right-left, “RL”) were 

concatenated and further used to generate a ground set 𝑉 consisting of 𝑁 = 268 vectors 

in 𝑇-dimensional space, where 𝑇 indicates the length of scan session. To construct the 
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parcellations, we first normalized all the data points to a unit norm sphere centered at 

origin. We then calculated the pairwise squared Euclidean distances between the data 

points, yielding a distance matrix of size 268 × 268 for each subject and each state. We 

also constructed functional connectivity matrices to visualize the brain connectivity 

patterns in different states. To this end, the Pearson correlation coefficients between the 

time courses of each possible pair of nodes were calculated and normalized using 

Fisher’s z-transformation. Each element of the functional connectivity matrix represents a 

functional connection, or edge, between two nodes. 

 

2.3 Individualized and state-specific functional network parcellation 

We used exemplar-based parcellation (Salehi et al., 2018) to assign nodes into functional 

networks in an individualized manner for each state and subject, such that every subject 

acquired an individualized node-to-network assignment (NNA) for each state. This 

parcellation method provides an approach to summarize data by introducing a set of 𝐾 

exemplars that best represents the full data.  

We followed the same methodology explained in (Salehi et al., 2018), by attempting 

to find 𝐾 exemplar labels 𝑆 = {𝑒*, 𝑒,, … , 𝑒@} with 𝑒5 ∈ {1,… ,𝑁 = 268}, whose 

corresponding exemplar vectors for each individual 𝑗 in each state 𝑚, i.e., 𝑆U,> =

o𝑣/"
U,> , 𝑣/#

U,> , … , 𝑣/$
U,>p ⊆ 𝑉U,>, maximizes a desired utility function, as follows: 

 
𝐹(𝑆) = bb𝑓U,>(𝑆U,>)

A

>B*

V

UB*

, (1) 

where 𝑆	is the exemplar label set and 𝑆U,> is the set including the corresponding 

exemplar vectors in subject 𝑗 ∈ {1, … , 𝐽 = 718} at state 𝑚 ∈ {1,… ,𝑀 = 9}. Here, 
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𝑓U,>: 21.,' → ℝ is the utility function of subject 𝑗 at state 𝑚. This utility function is 

derived from the following loss function 𝐿(𝑆), which measures how much information 

we lose if we summarize the entire ground set to the exemplar set 𝑆 by representing each 

data point with its closest exemplar: 

 
𝐿U,>(𝑆) =

1
|𝑉U,>|bmin

/∈:
𝑑(𝑣/

U,> 	, 𝑣?
U,>)

<

?B*

, (2) 

where 𝑉U,> is the ground set of size 268 and dimension 𝑇 for subject 𝑗 at state 𝑚, and 

𝑣/
U,> ∈ 𝑆U,> ⊆ 𝑉U,> is the node exemplar vector corresponding to the exemplar label 𝑒 ∈

𝑆.  

While minimization of (2) subject to the cardinality constraint would output the 

desired exemplar set, this minimization is NP-hard. We transform this minimization into 

maximization of a monotone, non-negative, submodular function (see (Fujishige, 2005) 

for a formal definition and for properties of submodular functions) by introducing an 

auxiliary exemplar, 𝑣!, as follows (Krause and Gomes, 2010): 

 𝑓U,>s𝑆U,>t = 𝐿U,>(𝑣!) −	𝐿U,>s𝑆U,> ∪ 𝑣!t, (3) 

Maximization of (3) subject to the cardinality constraint is tractable using general 

greedy algorithm, which is known to provide an efficient 1-1/e ≈ 0.63 approximation to 

the optimal solution (Nemhauser et al., 1978). The auxiliary exemplar can be an arbitrary 

vector whose distance to every data point is greater than the pair-wise distances between 

data points. Here we used 𝑣! = [3,0, … ,0] as the auxiliary exemplar and employed an 

accelerated version of the greedy algorithm, known as Lazy Greedy (Minoux, 1978). 

After 𝐾 exemplar labels were identified, the corresponding exemplar vectors in every 

subject and state were used to parcellate the brain. We assigned each node 𝑛 in subject 𝑗 
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and state 𝑚 (i.e. vector 𝑣?
U,>) to the closest exemplar (which represents the corresponding 

community or network), i.e.: 

 Network	s𝑣?
U,>t = argmin

7%∈:
𝑑(𝑣?

U,> , 𝑣/&
U,>). (4) 

Thus, the brain was parcellated into 𝐾 networks each represented by an exemplar.  

To generate the state-specific population-level parcellations, we employed the winner 

takes all algorithm over all subjects in each state. That is, region 𝑛 was assigned to 

network 𝑘 at state 𝑚 if the majority of subjects in that state voted for this assignment. As 

the number of networks (𝐾) is an arbitrary parameter, we repeated the analysis for 𝐾 =

2 − 50 networks. Results presented in the main text are for 𝐾 = 12 networks, as it was 

the minimum number of networks after which the assignments stabilized with 

significantly less changes in the NNAs (see Supplementary Materials, Figure S3).  

 

2.4 Functional network reconfigurations across states 

We quantified the state-evoked network reconfigurations by computing the pair-wise 

Hamming distances (Hamming, 1950) between every pair of state-specific population-

level parcellation vectors. This resulted in a distance matrix 𝐷W×W, where every element 

𝑑U",U# represents the number of nodes that changed their assignment from state 𝑚* to 

state 𝑚,. To quantify each individual network reconfigurations, we considered REST1 as 

the benchmark for comparison. For every network 𝑘, we computed the normalized 

Hamming distance between the NNA vector limited to the nodes that are assigned to 

network 𝑘 during REST1, and the vector containing the same nodes’ network assignment 

during every other state. 
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2.5 Decoding cognitive states by node-to-network assignments (NNA) as features 

To demonstrate that the state-evoked reconfigurations are robust across subjects and 

specific to each state, we built a cross-validated predictive model that decodes the 

cognitive state of each individual brain based solely on the NNAs. We employed two 

separate predictive pipelines: in the first pipeline, we employed a two-class (binary) 

classification on every pair of states. For every pair of state 𝑚* and 𝑚,, we combined the 

corresponding populations resulting in a data set with 718	 × 2 subejcts. In this case, the 

chance accuracy was equal to 50%. In the second pipeline, we employed an eight-class 

classification over the entire data set (excluding REST2). REST2 was excluded to 

eliminate the reduncdancy of resting-state session and balance the probability space 

evenly across sessions.  For both pipelines, we developed a predictive model using 

gradient boosting machine [GBM (Friedman, 2001)] with 100 estimators (or decision 

trees) and 0.05 learning rate. We randomly divided the entire population into a training 

set and a testing set. We calculated exemplars using the training set and used those to 

parcellate the entire population. Next, we trained a GBM on the NNAs of the training set 

and predicted the state for the unseen subjects in the testing set. To evaluate the 

significance of the results, we employed non-parametric permutation test: we randomly 

permuted the output vector (here the cognitive states) 1000 times and each time ran the 

permuted values through the same predictive pipeline and calculated the accuracy.  

Note that we restricted the exemplar identification to the training set to assure the 

independency of the training and the testing set throughout the pipeline. However, we 

repeated the entire analysis using the initial parcellation schemes in a 10-fold cross-
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validated setting (Figure S4). The predictive pipeline was implemented using Python’s 

Scikit-learn library (Pedregosa et al., 2011). 

 

2.6 Classifying nodes based on NNA reconfigurations 

To quantify the state-evoked network reconfigurations, we employed a statistical 

ensemble analysis. For every state, we randomly divided the entire population into two 

equal-size sets, and employed the population-level parcellation on each set independently 

using the winner-takes-all strategy over the corresponding subjects. We repeated this 50 

times, to derive a distribution of 100 state-specific population-level parcellations. Using 

this distribution, we quantified which nodes changed their NNAs across states and 

subjects. To this end, we calculated the entropy (a metric of uncertainty from information 

theory (Borda, 2011)) of the NNA histograms. We used two measures of entropy: 1) 

EntropyXYZ[[9[\]^7X_ to measure the variation across multiple groups of subjects within 

the same state (see Eq. 5-6), and 2) EntropyXYZ[[9[_`_7 to measure the variation across 

multiple states for the same group of subjects (see Eq. 7-8). A high entropy in either of 

these measures means high variation in NNAs.  
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where 𝟏 represents the indicator function: 

 𝟏(𝑝),+ ∈ 𝑘) = G1, if		𝑝)+ ∈ 𝑘
0, if		𝑝)+ ∉ 𝑘 (9) 

Here, Pr
XYZ[[9[_`_7

(𝑝5,U ∈𝑘)	indicates the probability of node 𝑝 in iteration 𝑖 ∈

{1, … ,100} and state 𝑚 ∈ {1,… ,𝑀} to be assigned to network 𝑘 ∈ {1,… , 𝐾}, averaged 

over all states. Similarly, Pr
XYZ[[9[\]^

(𝑝5,U ∈𝑘) indicates this probability averaged over all 

iterations. In this regard, every node falls into a two-dimensional space with cross-state 

and cross-subject entropies as its axes. We then grouped the nodes into three entropy 

classes, based on their position in this space: 1) steady nodes, those with zero cross-state 

and cross-subject entropies, 2) flexible nodes, those with positive (non-zero) cross-state 

entropies, and relatively low cross-subject entropies, and 3) transient nodes, regions with 

positive cross-state entropies and relatively high cross-subject entropies. To define a 

threshold to separate low and high cross-subject entropies, we took the average of this 

measure after excluding steady nodes (𝜏a7`b = 29.47). Eq. 10 formally defines the three 

entropy classes: 

 
Node	class = ~

Steady,																																			if	EXYZ[[9[_`_7 = EXYZ[[9[\]^ = 0
Flexible,													if	EXYZ[[9[_`_7 > 0	and	EXYZ[[9[\]^ ≤ 𝜏a7`b
Transient,									if	EXYZ[[9[_`_7 > 0	and	EXYZ[[9[\]^ > 𝜏a7`b

, (2) 

where E stands for Entropy. 

We also performed a subject-based entropy analysis, where instead of performing a 

statistical ensemble analysis to create a pool of 100 population-level parcellations, we 

considered every single individual-level parcellation, resulting in a pool of size 718 (and 

thus replaced 100 with 718 in the equations above.) The subsequent analyses are based 
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on the population-based entropies, and the subject-based entropies are included in the 

Supplementary Materials (Figure S5). 

 

2.7 Functional characterization of entropy classes 

To provide behavioral context for these entropy classes, we conducted a meta-analysis 

using the behavioral domains and paradigm classes reported in the BrainMap Functional 

Database (Fox and Lancaster, 2002). We examined the association between BrainMap’s 

55 behavioral domains and 108 paradigm classes (reflecting 10,467 task-activation 

experiments from 27,820 subjects) within the node entropy classes (steady, flexible, and 

transient), both at the node-level (with 268 nodes) and at the network-level (with 12 

networks). The details are referenced in Supplementary Materials. 

 

2.8 Graph visualization of the functional network reconfiguration across states 

To provide a complementary analysis on how different networks interact with each other, 

we employed a graph visualization approach. While the delineation of functional 

networks represents the integration and segregation of different regions, functional 

connectivity analysis—using graph visualization—provides additional information on 

connections both within- and between-networks. This analysis further differentiates the 

notion of community and connection, as motivated by previous studies (Bassett et al., 

2015; Mattar et al., 2015b). To this end, we constructed a population-level connectivity 

matrix for each state by taking the average of the individualized connectivity matrices. 

For the purpose of visualization, we summarized the average matrix to the top 10% 

edges and removed all self-loops. The resulting matrix for each functional condition was 
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visualized as a graph using R package networkd3 [https://CRAN.R-

project.org/package=networkD3]. These force-directed graphs aim to visually organize 

networks such that the energy of the graph as a whole is minimized. This is accomplished 

by assigning both repulsive and attractive forces to each pair of nodes such that the nodes 

with stronger interconnections are displayed closer to each other and the ones with 

weaker connections are shown as more distant. 

 

2.9 Effects of head motion on the state-evoked network reconfigurations  

Head motion is a known confound of connectivity analyses (Van Dijk et al., 2012). We 

ruled out the possibility that the network differences are derived by systematic 

differences in head motion across functional conditions. We employed a pairwise 

Wilcoxon signed-rank test on the mean frame-to-frame displacement 

(Movement_RelativeRMS.txt) across functional conditions and corrected for multiple 

comparisons using Bonferroni correction (see Figure S9). 

 

 Results 

3.1 Functional network reconfigurations across states 

Figure 1a displays state-specific population-level networks for 12 networks (K = 12) 

across nine functional conditions. While the overall network structure remained largely 

intact, specific nodes changed their network assignment in different task states. For 

example, the posterior areas of the caudate nucleus were associated with the ventral 

attention network during rest, but their network assignments changed to the language or 
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the sensorimotor network during task performance (Figure 1a). To quantify network 

reconfiguration across states, we calculated the Hamming distance (Hamming, 1950)—or 

the number of nodes that change their NNAs—for each pair of states (Figure 1b). The 

two resting-states (REST1 and REST2) had the most similar functional organization with 

only a 5.6% (15/268) difference in their NNAs. In contrast, the smallest reconfiguration 

between any pair of states was over three times larger: WM and GAMBLING, 19% 

(51/268). GAMBLING and SOCIAL demonstrated the highest level of network 

reconfiguration (45.5% difference). SOCIAL was the most distinct with 41.9% network 

reconfiguration on average.  

To quantify the level of state-evoked reconfiguration for each network we computed 

the ratio of the nodes that change their network assignments from REST1 to every other 

state (Figure 1c). Among all eight states, REST2 exhibited the maximum similarity to 

REST1, with 7 of 12 networks exhibiting no reconfiguration. Networks including 

subcortical/cerebellar nodes exhibited the maximum reconfiguration, while the visual 

networks (visual I and II), and the default mode network (core) exhibited the least 

reconfiguration from REST1 to all other states. The sensorimotor network displayed the 

maximum reconfiguration during MOTOR task, and the language network displayed the 

maximum reconfiguration during LANGUAGE task. Similarly, a majority of the higher-

order association networks—including the frontoparietal network, the dorsal attention 

network, and the cingulo-opercular network—showed maximum reconfiguration during 

the SOCIAL cognition task (Figure 1a). These observations suggest that the task relevant 

nodes organize into specific networks in order to execute a particular task. These fuzzy 

network profiles are displayed in detail in Figure S1.  
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Figure 1. Functional network reconfigurations across states. a) Each row shows a state-
specific population-level parcellation, calculated using the winner-takes-all strategy for each 
functional condition (Mot: MOTOR, Gam: GAMBLING, WM: WORKING MEMORY, Em: 
EMOTION, Lan: LANGUAGE, Rel: RELATIONAL, Soc: SOCIAL, R1: REST1, and R2: 
REST2). b) Hamming distance between every pair of state-specific population-level parcellation 
schemes is visualized. Hamming distance is calculated as the number of different NNAs between 
the two states, with values ranging from 0 (perfect matching) to the number of nodes (here, 268). 
As expected, the two resting states have the most similar parcellations (15/268 = 5.6% different 
NNAs). SOCIAL and GAMBLING are the least similar parcellations (122/268 = 45/5% different 
NNAs). SOCIAL task is the most distinct with 41.9% (=112.25/268) different NNAs on average. 
c) The ratio of the nodes that changed their NNAs from REST1 to every other state is calculated 
for every network separately. For every network, the state during which the maximum 
reconfiguration is observed is highlighted in black. VAN: ventral attention network, DAN: dorsal 
attention network, Visual I: primary visual, DMN: default mode network, CON: cingulo-
opercular network, Visual II: secondary visual, FPN: frontoparietal network, SMN: sensorimotor 
network, Sub-Cereb: subcortical/cerebellum. See Figure S1 for a probabilistic illustration of these 
network definitions. 
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3.2 Node-to-Network Assignments (NNA) decode cognitive states  

Figure 2 illustrates the accuracy of the predictive models that predict the cognitive state 

of unseen subjects, based on their NNAs. For the two-class (binary) classification (Figure 

2a), the random accuracy was 50%. The minimum prediction accuracy was associated 

with the REST1-REST2 pair (accuracy=55%) consistent with the fact that these two runs 

reflect similar cognitive states. We successfully decoded all other pairs of states with 

accuracies considerably higher than random, with minimum, maximum, and average 

accuracy of 84%, 97%, and 94%, averaged over all 𝐾s from 2-50 (Figure 2a). Similarly, 

the 8-class classification accuracies were also significantly higher than random with 

minimum, maximum, and average accuracy of 66%, 87%, and 78%, averaged over all 

numbers of networks: 𝐾s from 2-50 (Figure 2b). That we could significantly predict 

cognitive state based solely on NNAs suggest that functional networks reorganize due to 

changes in state in a robust, reliable, and predictive manner across subjects.  
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Figure 2. Decoding cognitive states by node-to-network assignments (NNA) as features. The 
subject pool was split into training and testing sets of equal-size. The exemplars (nodes with fixed 
NNAs both across states and subjects, representing each network) were computed using the 
training set and were used to parcellate the entire population. A GBM was trained on the training 
set using the NNA vectors as features. It was then used to predict the cognitive state of the novel 
subjects in the test set. a) The binary classification accuracies averaged over number of networks 
ranging from 2 to 50 are displayed. b) The 8-class classification accuracies are displayed for all 
number of networks (𝐾 = 2 − 50). The gray error bars represent the chance accuracy, computed 
as the mean and standard deviation of 1000 permutations. For 𝐾s larger than 17 the accuracies 
tend to stabilize with marginal variation. As expected, the minimum accuracies are observed for 
𝐾 = 2, since the entire vector only consists of two numbers: 1 or 2, depending on whether the 
node is assigned to network #1 or network #2. GAMBLING, RELATIONAL, EMOTION, and 
WM display lower prediction accuracies than MOTOR, SOCIAL, LANGUAGE, and REST. See 
Figure S4 for a 10-fold cross-validated predictive model with parcellation schemes derived from 
the entire population (not just the training set as shown above). 

 

  



 

 

 

139 

We also ruled out the possibility that the state-specific network reconfigurations are 

derived by the differences in the number of time points across different task conditions. 

To this end, we trimmed all functional runs to equal the length of the shortest task, 

(SOCIAL 176 time points), and repeated the analysis by generating the individualized 

and state-specific networks and re-running the steps in the predictive model. Similar 

networks reconfigurations and prediction accuracies were observed (Figure S10), 

suggesting that the differences in network configurations across states are not driven by 

differences in the amount of data, but reflect the underlying cognitive state. 

 

3.3 Classifying nodes based on NNA reconfigurations 

We next quantified the cross-state and cross-subject entropies for every node in the brain 

(Figure 3a). We observed that the two entropies were significantly correlated with each 

other (r=0.78, p<1×10-16), suggesting that the nodes with high cross-subject variation also 

tend to have high cross-state variance.  

Next, we used the two entropy measures to categorize nodes into three entropy 

classes: 1) steady nodes, those with consistent cross-state and cross-subject NNAs 

(displayed as red); 2) flexible nodes, those with flexible cross-state NNAs but consistent 

cross-subject NNAs (displayed as yellow); and 3) transient nodes, those with flexible 

cross-state and cross-subject NNAs (displayed as green). Figure 3b illustrates the 

localization of these entropy classes on the brain. We observed that steady nodes were 

mainly located in the superior frontal cortex, dorsolateral prefrontal cortex (dlPFC), 

precuneus, post-central gyrus, superior and middle temporal gyrus, and the occipital lobe. 

Flexible regions were located mainly in the inferior frontal gyrus, pre-central gyrus, 
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anterior cingulate cortex, posterior parietal cortex, inferior parietal lobule, and cerebellum 

(Figure 3b). Finally, transient nodes were located mainly in subcortical areas such as the 

hippocampus/parahippocampus, thalamus, and caudate. Figure 3c illustrates NNAs for 

the steady nodes.  
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Figure 3. Classifying nodes based on NNA reconfigurations. a) For every node, we calculated 
two measures of variability: the NNA entropy across states (Entropycross-state) and the NNA 
entropy across subjects (Entropycross-subject). The two measures are significantly correlated (r=0.78, 
p<1×10-10). We grouped nodes into three entropy classes based on their position in the 2-
dimensional entropy space: stable nodes (red, n=72/268); flexible nodes (yellow, n=115/268); and 
transient nodes (green, n=81/268). b) The three entropy classes are visualized on the brain. The 
steady class includes areas in superior frontal cortex, a large portion of the temporal and occipital 
lobe. The flexible class revolves around higher-order association areas including a large portion 
of the frontal and parietal lobes. The transient class is mainly localized in the subcortex and 
cingulate cortex. Also see Figure S5 for a more detailed illustration of these entropy measures, 
and Figure S6 for visualization of these flexibility classes as a continuum. c) The three entropy 
classes projected on the axial plane. d) Functional network assignments for the steady nodes, 
which are fixed across all functional conditions. 
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The current classification assigns nodes into discrete flexibility classes, which is 

suitable for visualization purposes. Figure S6 provides an illustration of these flexibility 

classes as a continuum, and Figure S5 visualizes the cross-state and cross-subject entropy 

values for all nodes using both population-based and subject-based analyses (see 

Methods for details).  

 

3.4 Localization of the node entropy classes in networks 

We next investigated the association between the three node entropy classes and our 

functional networks (Figure 4). We observed that all networks—excluding the visual I 

network—contained nodes of each class. However, the distribution of the three entropy 

classes differed considerably across networks (Figure 4a). For example, the dorsal 

attention network (76.6%), the cingulo-opercular network (56.5%), and the sensorimotor 

network (70.0%) had the majority of flexible nodes; the ventral attention network 

(57.7%), and the dorsal-medial portion of the default mode network (64.1%) had the most 

transient nodes; and the visual I network (62.5%), visual II network (64.3%), and the core 

portion of the default mode network (72.7%) contained most of the steady nodes. Finally, 

we observed that all functional networks contributed evenly to the steady class, but did 

not contribute evenly to the flexible or transient classes (Figure 4b). For example, the 

dorsal attention network contributed the most to the flexible class, while the dorsal-

medial portion of the default mode network and the subcortical/cerebellum contributed 

the most to the transient class. This suggests that individual brain networks have varying 

levels of stability, as defined by NNA entropy across task states and subjects. 
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Figure 4. Localization of the node entropy classes in networks. a) The Entropycross-state versus 
Entropycross-subject diagram is displayed for the nodes within each network. The within-network 
distribution of the entropy classes is further demonstrated. Primary and secondary visual 
networks and the core portion of default network are mainly comprised of steady nodes. The 
DAN, CON, and SMN mainly include flexible regions, and the VAN, dorsal-medial DMN and 
subcortical/cerebellum networks are mainly comprised of transient regions. The FPN has a large 
portion of both steady and flexible regions, the subcortical/cerebellum network has a large portion 
of both flexible and transient nodes, and the Language network has close to an even distribution 
of all three entropy classes. b) The distribution of functional networks within each entropy class is 
visualized. While the contribution of functional networks to the steady class is evenly distributed 
across all networks, the DAN, CON, SMN, and subcortical/cerebellum have the largest 
contribution to the flexible class, and the VAN, dorsal-medial DMN, and subcortical/cerebellum 
have the largest contribution to the transient class. DMN (d-m): DMN (dorsal-medial). 
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3.5 Functional characterization of entropy classes 

Next, we demonstrate that these entropy classes are functionally meaningful divisions. To 

this end, we provide evidence for the distinct functionality of these entropy classes.  

 

3.5.1 Flexible nodes inform state-decoding  

We hypothesized that nodes in the flexible entropy class should have the highest 

predictive power for decoding states. We support this hypothesis with two lines of logic: 

first, because flexible nodes change their network organization according to task state, 

how the NNA reconfigures should therefore reflect the underlying state; second, because 

flexible nodes have consistent NNAs across subjects, they should generalize across novel 

subjects. To test our hypothesis, we computed how important each NNA feature was in 

the employed predictive pipeline. Node importance (i.e. “feature importance”) was 

calculated by the GBM classifier as the number of times that each node was used to make 

a key decision that improved the classifier’s performance measure (Friedman, 2001). We 

examined the distribution of the importance scores within each node entropy class. 

Consistent with our hypothesis, the flexible regions had the largest importance scores on 

average (Figure 5a; two-tailed t-test Bonferroni corrected for multiple comparisons, 

t(flexible, steady)=26.8, p<3×10-16, t(flexible, transient)=30.4, p<3×10-17,  t(steady, 

transient)=0.34, p<0.79). That the task state can be decoded based on the NNA of the 

brain’s flexible nodes suggests that these nodes are strongly modulated by the task 

demands such that the behavior of flexible nodes forms a robust and reliable signature of 

task state. 
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3.5.2 Steady nodes display the strongest behavioral associations 

Similarly, we investigated the behavioral profiles of different entropy classes. We 

hypothesized that “steady” nodes should be more strongly associated with specific 

behavioral domains or paradigm classes. This is because steady nodes are less likely to 

“switch” association with task state and subjects, and therefore are more likely to be 

consistently reported among a significant number of task-based fMRI and PET 

experiments in BrainMap database, indicating a more specific brain-behavior association.  

We observed that indeed, there was a trend for steady nodes to have stronger behavioral 

domain and paradigm class loadings than either flexible or transient nodes (One-tailed t-

test Bonferroni corrected for multiple comparisons, behavioral domain: t(steady, 

flexible)=1.5, p<0.15, t(steady, transient)=3.3, p<0.001; paradigm class: t(steady, 

flexible)=1.7, p<0.09, t(steady, transient)=4.6, p<8×10-6; Figure 5b, c). The same trend 

was observed at the network-level (Figure S7). This further suggests that entropy classes 

provide information that is relevant to how the brain executes its functional repertoire, as 

defined by behavioral domains and paradigm classes.   
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Figure 5. Functional characterization of entropy classes. a) The distribution of the feature 
(node) importance in predicting states is displayed across the three entropy classes. The flexible 
class contains the most important nodes for state decoding. Two-tailed t-test between every pair 
of steady, flexible, and transient class was performed and Bonferroni corrected for multiple 
comparisons, *** p<1×10-16. b) The distribution of paradigm classes across entropy classes is 
displayed. Steady nodes have higher values of significant paradigm class loadings than either 
flexible (t=1.7, p<0.09) or transient nodes (t=4.6, p<8×10-6). c) The distribution of behavioral 
domains across entropy classes is displayed. Steady nodes have higher values of significant 
behavioral domain than either flexible (t=1.5, p<0.15) or transient nodes (t=3.3, p<0.001). 
Analyses in (b) and (c) represent node-level analyses of BrainMap Functional Database's 
experimental meta-data representing 55 behavioral domains and 108 paradigm classes. Profiles 
were computed within each node as the forward inference likelihood z-scores, thresholded at 
z>1.96, and summed over all behavioral domains or paradigm classes. Colored circles represent 
the 268 nodes, colored according to their entropy classes. See Figure S7 for network-level 
functional relevance. 
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3.6 Graph visualization of the functional network reconfiguration across states 

Finally, we evaluated the functional connectivity changes associated with changes in 

state, for comparison with studies that investigate connectivity changes as a proxy for 

network reorganization. Figure 6 (the right side of each panel) visualizes the connectivity 

matrices as force-directed graphs with nodes colored according to the functional network 

to which they belong and edges colored according to the entropy class of their two end 

points. Node size is proportional to the graph theory measure degree. We observed that 

nodes from different but related networks were integrated for all states. For instance, the 

core and dorsal-medial portions of the default mode network as well as the visual I and 

visual II networks showed strong integration with each other (Figure 6). However, the 

magnitude of this integration differed across different states. For example, while the 

visual I and visual II networks displayed strong integration across all states, the 

functional connectivity between them was weaker during the Social task. Finally, 

networks changed their segregation and integration patterns as a function of state. For 

instance, the dorsal attention network differed considerably across states, with higher 

segregation during the task states and higher integration during the rest states. 

Conversely, the subcortical/cerebellum and SMN presented higher segregation during the 

rest state and higher integration during the task states.  

We next quantified the reorganization of functional networks across states (Figure 6; 

the bar plots on the bottom-left of each panel). The distribution of functional networks 

changed considerably across states, with more uniform distribution during rest than task. 

In this sense, the dorsal attention network was the largest network (with the maximum 

number of nodes) during GAMBLING, WM, EMOTION, LANGUAGE, and 



 

 

 

148 

RELATIONAL states. The subcortical/cerebellum network was considerably larger 

during rest than task, suggesting that nodes in the subcortical/cerebellum network tend to 

integrate with other networks during the execution of a task, while displaying segregated 

behavior during rest (consistent with our observation from the graph). The sensorimotor 

network lost the maximum number of nodes during the MOTOR task, while the language 

network lost the maximum number of nodes during the LANGUAGE task. While this 

observation may seem contradictory to the demands of the tasks, it could be an indication 

that these networks tend to integrate most with other networks when the task strongly 

engages them, potentially facilitating the information flow across networks (Cole et al., 

2016; Ito et al., 2017). This is also consistent with our earlier finding (Figure 1c) that 

these networks displayed the maximum reconfiguration in changing to these tasks. 

To investigate the role of entropy classes in the context of functional connectivity, we 

quantified the connectivity (i.e. edge strength) between nodes from the same or different 

entropy classes (Figure 6; the error bars on the top-left of each panel): steady-steady 

edges (colored as red), steady-flexible edges (colored as dark gray), steady-transient 

edges (colored as gray), flexible-flexible edges (colored as yellow), flexible-transient 

edges (colored as light gray), and transient-transient edges (colored as green). We 

observed that the edge strength between steady nodes was significantly stronger than the 

edge strength between other node classes (p<2×10-16, Bonferroni corrected for multiple 

comparisons). Among edges between nodes of the same class, edges between steady 

nodes were significantly stronger than the edges between flexible nodes (p<2×10-16, 

Bonferroni corrected for multiple comparisons) and edges between flexible nodes were 

significantly stronger than edges between transient nodes (p<1×10-2, Bonferroni 
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corrected for multiple comparisons). Among edges between nodes of differing class, the 

edges between steady and flexible nodes were the strongest (p<2×10-2, Bonferroni 

corrected for multiple comparisons). Edges associated with transient nodes had the lowest 

strength.  
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Figure 6. Graph visualization of the functional connectivity reconfiguration across states. 
Each panel corresponds to one functional condition. For each functional condition, three diagrams 
are displayed. The right diagram is the force-directed graph visualization of the functional 
connectivity matrix, thresholded to retain the top 10% of the edges, and averaged over all 
subjects. Nodes are colored according to their population-level network assignments (see the 
bottom legend bar), and are sized proportional to their degree values (that is, the sum of edge 
weights connected to the node). Edges are colored according to the entropy class of their two end 
points (see the right legend bar), for example the connections between two steady nodes are 
colored red, connections between a steady node and a flexible node are colored light gray, and so 
on. The graphs are structured such that nodes with stronger connections are spatially closer to 
each other. As expected, nodes within the same network are clustered spatially close to each 
other. Further, nodes from different but related networks are also spatially integrated (for 
example, the core and dorsal-medial portions of DMN, or primary and secondary visual networks 
are integrated). However, there is a difference in the integration and segregation level of different 
functional networks across different task states. The bottom left diagram within each panel 
represents the frequency of the nodes assigned to each functional network. The top left diagram 
within each panel represents the strength of different types of connections. Error bars represent 
the standard deviation across connections. The connections within steady nodes are significantly 
stronger than the rest of the connections. These steady nodes form a strong core organization in 
the brain with large interconnections, similar to the “rich club” pattern (see Figure S8). 
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 Discussion 

In this work, individualized and state-specific functional networks were used to study 

network reconfigurations evoked by different task and rest states. Our findings highlight 

that the brain’s network organization is not fixed, but rather, that networks reconfigure as 

a function of cognitive state. We showed that this holds true across different task states 

and across individuals. We measured network reconfiguration as node-to-network 

assignments (NNA) and demonstrated that a novel subject’s current state could be 

predicted with 66-97% accuracy based on NNA alone (Figure 2). This finding 

demonstrates that networks reconfigure in a meaningful and reproducible manner across 

cognitive states.  This also highlights the robustness of state-evoked network 

reconfigurations across subjects. Further, we showed that nodes group into three entropy 

classes based on their NNAs across states and subjects (Figure 3). Steady nodes exhibit 

consistent NNAs across both states and subjects and are primarily located in visual and 

medial cortical regions. Flexible nodes change their network assignments according to 

state in a consistent manner across subjects and are primarily located in higher order 

cognitive regions. Transient nodes exhibit variable network assignments across both 

states and subjects and are primarily located in the sub-cortex and cerebellum; regions 

known to have lower reliability in functional connectivity studies (Noble et al., 2017). A 

direct assessment of reliability however, showed that there are no significant differences 

in reliability values across the three flexibility classes (Supplementary Materials, Figure 

S11).  

Despite these trends of anatomical locations of nodal classes, all networks contain 

some nodes from each class. We further demonstrated the functional relevance of these 
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nodal classes: flexible nodes contribute the most to models predicting cognitive state and 

steady nodes display the largest behavioral loadings based on a large-scale meta-analysis 

of task activation studies (Figure 5 and Figure S7). Together, these results demonstrate 

that instead of simply changing their functional connectivity due to task, nodes 

reorganize into specific networks associated with specific tasks, with the networks 

including or dropping nodes according to the demands of a particular task state. In a 

recent work, Bijsterbosch et al. have shown that cross-subject changes in spatial 

configuration of functional regions can be interpreted as changes in functional 

connectivity (Bijsterbosch et al., 2018). Similarly, the observed cross-state changes in 

network definitions are likely to be interpreted as changes in connectivity values across 

states. As such, the state-evoked reconfigurations need to be considered when 

interpreting changes in connectivity or any graph theory measures across states. 

 

4.1 Functional network organization is state-dependent 

Our results suggest that a similar core network structure is observed across many 

different cognitive states, but that nodes can be included or dropped from these networks 

as a function of the specific state. These results suggest that there is not a fixed functional 

network structure across states. Furthermore, our BrainMap meta-analysis shows that 

nearly all nodes were significantly associated with multiple paradigm classes, supporting 

the flexibility of nodes in executing functions. Altogether, our results suggest that the 

node-to-network assignments are inherently probabilistic as the functional organization 

of the brain is constantly reconfiguring with task (Figure 1 and Figure S1).  
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Numerous previous studies have focused on fixed networks in various ways, typically 

by using coordinates from previous resting-state studies (Cassady et al., 2019; Cole et al., 

2014; Cole et al., 2016; Gratton et al., 2018; McMenamin et al., 2014; Mohr et al., 2016; 

Satterthwaite et al., 2015; Schultz and Cole, 2016; Telesford et al., 2016).  Several 

studies, for example (Cole et al., 2013; Zanto and Gazzaley, 2013), have examined a 

single network, the frontoparietal network, and measured changes within this network as 

a function of task-state. While such an approach can be justified, it potentially misses 

additional information that could be gleaned in considering how the network itself 

reconfigures. The sensorimotor network has also been studied as an implicitly defined 

fixed functional network (Cassady et al., 2019; Power et al., 2011). While it is true that 

there is a core network, the findings presented here illustrate that the sensorimotor 

network is highly variable across states (Figure 4a), revealing substantial state-evoked 

reconfigurations that have not been previously characterized. Perhaps as one would 

expect, the largest reconfiguration of the sensorimotor network occurs when subjects are 

executing the motor task (Figure 1c). The sensorimotor network had the lowest portion of 

transient regions, suggesting the low cross-subject variability, consistent with previous 

observations (Finn et al., 2015; Mueller et al., 2013).  

In addition, our results also replicate previously observed network reconfigurations. 

Consistent with Andrews‐Hanna et al. (Andrews‐Hanna et al., 2014), we highlight that 

there is a core sub-system of the default mode network (including medial superior frontal 

gyrus) and dorsal-medial and medial-temporal sub-systems of the default mode network 

(including ventral medial prefrontal cortex (vmPFC), inferior temporal gyrus and 

temporal pole). Our results extend this characterization by suggesting that the two sub-
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systems of the default mode network display distinct reconfiguration behaviors, with the 

core subsystem remaining unchanged across states, and the dorsal-medial subsystem 

reconfiguring more flexibly across states and subjects (Zhang et al., 2016). Highlighting 

the complex role of the default mode network in both tasks and rest, our observations 

indicate that the default mode network nodes change their network assignments from the 

default mode network to other higher-order association networks (such as the 

frontoparietal network and the cingulo-opercular network). Overall, these observations 

support the notion that all networks reorganize due to task, likely in a task specific 

manner. 

 

4.2 Functional networks contain steady, flexible, and transient nodes 

Our findings reveal that all networks contain a combination of steady, flexible, and 

transient nodes (Figure 4a). This suggests that networks consist of a core set of steady 

nodes that then recruit and dismiss flexible and transient nodes according to the task 

demands. This result suggests that within each network there are specialized regions 

associated with distinct functionalities, altering both intra-network communication and 

inter-network integration. These functionalities are corroborated by the theory of “local” 

versus “distributed” neural communication (Cole et al., 2016; Ito et al., 2017), where 

transitions across states require the segregated processing units (distinct functional 

networks) to integrate information through flexibly changing network assignments.  

The contribution to the steady nodes was evenly distributed across all networks 

(Figure 4b), indicating all networks retained some core functional network configuration. 

The majority of steady nodes were located in regions previously been implicated as part 
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of the “rich club”, a common organization in complex systems where important (or 

“rich”) nodes connect preferentially to other important nodes (Grayson et al., 2014; Park 

and Friston, 2013; Van Den Heuvel and Sporns, 2011) (see Supplementary Materials, 

Figure S8). Additionally, we observed strong functional connectivity between nodes in 

the steady class (Figure 6, the top left error bars) in a similar vein to the connections 

between rich club nodes. These observations were consistent across all nine states (Figure 

S8), implying that the “rich club” organization of the brain is independent of task-state. 

This also mirrors a core-periphery structure in the brain with core nodes strongly and 

mutually interconnected and periphery nodes sparsely connected to each other and to the 

core nodes (Bassett et al., 2013; Fedorenko and Thompson-Schill, 2014; Park and 

Friston, 2013).  

In contrast, the distribution of flexible nodes varies across networks, suggesting that 

some networks reconfigure more with cognitive state changes than others (Figure 4b). 

For example, the DAN, CON, and FPN had a larger proportion of flexible nodes (Figure 

4a, b). Previous studies report that these networks rapidly update their connectivity 

patterns according to the task context (Anderson et al., 2013; Cole et al., 2013; Crossley 

et al., 2013; Krienen et al., 2014; Mennes et al., 2012), facilitating the information flow 

across networks (Cole et al., 2016; Ito et al., 2017). The large number of nodes that 

change their network assignments to the DAN, CON, and FPN may underlie these 

previously observed changes in connectivity patterns. Our results are also consistent with 

the role of these networks as functional hubs (Cole et al., 2013; Power et al., 2013) and 

their strong out-of-network connections (Ito et al., 2017).  
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Finally, the majority of the transient nodes were assigned to the 

subcortical/cerebellum, dorsal-medial subsystem of the default mode network, and the 

ventral attention network (Figure 4a, b). These nodes, mainly located in heteromodal 

association and limbic cortex, actively change their network assignment across both 

subjects and states. High cross-subject variability in these regions has been previously 

reported (Mueller et al., 2013; Zhang et al., 2016), and linked to differences in 

intelligence (Li et al., 2009), attention (Cohen et al., 2015; Rosenberg et al., 2016), and 

personality traits (Adelstein et al., 2011). This suggests that these regions promote a more 

personalized reconfiguration in the brain to adapt to the task at hand. Future work could 

explore the extent to which differences in the network reconfiguration in these regions 

could be indicative of, or be inferred from, the individual differences in task performance.  

4.3 Functional network configuration predicts state 

Individual cognitive states can be predicted from network node assignments, suggesting 

that the state-specific information of network organization is sufficiently robust and 

reliable to form a signature for a given state. Prior work on task decoding has typically 

employed binarized classification of tasks. The pair-wise accuracies (binarized 

classification) achieved here (ranging from 84% to 97% with average of 94%; Figure 2a) 

were significantly higher than those previously reported (Cole et al., 2011; Heinzle et al., 

2012; Woolgar et al., 2011). Our accuracies for the 8-class classification (ranging from 

66% to 87% with average of 78%; Figure 2b) were also higher than the accuracies 

reported in the literature, even for easier decoding problems such as classification with 

lower number of classes (Cole et al., 2013) or within-subject classification paradigms 

(Haxby et al., 2014). Nevertheless, the main focus of the predictive analysis was to 
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demonstrate that state-evoked demands lead to different network reconfigurations, and 

functional connectivity studies should consider these reconfigurations when studying 

within- and between-network connectivity patterns. In fact, even though the network 

node assignment vector (of length 268) contains only integer values (i.e., 1, …, K for K 

networks), this minimal information was sufficient to predict the cognitive state (task) of 

novel subjects. This highlights the reliability of these state-specific reconfigurations of 

the brain’s large-scale network organization. 

 

4.4 Individualized functional networks are needed 

In addition, our results highlight the need for individualized approaches to systems 

neuroscience and medicine (Perez Velazquez, 2017; Satterthwaite and Davatzikos, 2015) 

by demonstrating that node-to-network assignments contain large individual variations 

across states (i.e. our transient node class). Previous work has shown promise in defining 

network boundaries at the individual level (Braga and Buckner, 2017; Braga et al., 2019; 

Gordon et al., 2017b; Kong et al., 2018; Laumann et al., 2015; Wang et al., 2015). 

Individualized networks are shown to be highly reliable (Laumann et al., 2015), closely 

correspond with task activations (Gordon et al., 2017b), and behaviorally meaningful 

(Kong et al., 2018). Our work builds on this literature and extends it by highlighting that 

even within an individual the functional networks reliably reconfigure as a function of 

cognitive state. Such state-specific individualized networks could provide input for real-

time fMRI neurofeedback paradigms (Emmert et al., 2016; Hartwell et al., 2016; 

Koizumi et al., 2017), and brain stimulation therapies (Fitzgerald, 2011; Plow et al., 

2016), focusing on the disruption of networks at the single subject level. The 
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conventional approach of defining fixed networks via population-level parcellations may 

limit the efficacy of such treatments. State-specific individualized networks also may 

provide higher specificity when considered as predictive features in machine learning 

algorithms (Bzdok and Meyer-Lindenberg, 2017; Vu et al., 2018).  

In a recent work, Gratton et al. have studied the magnitude of functional network 

variability across subjects, tasks, and sessions (Gratton et al., 2018). Their study of brain 

reconfiguration was restricted to changes in functional connectivity matrices as a whole 

(i.e., correlation of the vectorized connectivity matrices) with the core finding that 

connectivity matrices are remarkably stable. Our work differs in that we study the large-

scale network reconfigurations by probing the changes in node-to-network assignments 

across subjects and states. These two divergent but complementary views shed light on 

different aspects of the brain dynamics. While their analysis has shown that functional 

connections are largely stable with subtle cross-state changes (in terms of correlating 

vectorized matrices), here we demonstrate that about 73% (i.e., 196 out of 268) of the 

nodes actually change their network assignment as a function of state. In addition, their 

observations of functional connectivity matrices indicate that the state-evoked 

modulations are largely individual-specific (i.e., the consistent state-specific changes are 

subtle), whereas we demonstrate that state-specific changes in NNAs are sufficiently 

robust and reliable across subjects to predict the cognitive state. Combined, these 

observations suggest that while gross matrix level connectivity patterns change only 

minimally with state (Gratton et al., 2018) consistent with earlier functional 

fingerprinting findings across state (Finn et al, 2015), individual node to network 

assignments are flexible, allowing the brain to reconfigure its functional organization as 
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the task demands change. Such reconfigurations are easily measured and change in a 

significant and meaningful manner.  

 

4.5 Further considerations 

Although cognitive-state dependent network reconfigurations were investigated here, we 

did not investigate the temporal dynamics within a given task. This was partly because 

the length of the sessions in HCP data vary (Uğurbil et al., 2013; Van Essen et al., 2013) 

and because of methodological concerns surrounding dynamic brain-state definitions, that 

is, we currently lack a strict way of identifying and validating within-task cognitive states 

which are consistent across all subjects. However, it is likely that the same 

reconfiguration is observed dynamically, on a moment-to-moment basis within each 

condition, specifically for the HCP tasks, which were designed to tap different cognitive 

processes even within a single task run (Barch et al., 2013). Future work could extend 

this framework to study the within session dynamics of network reconfiguration. 

We employed a functional atlas consisting of 268 nodes, generated from an 

independent group of healthy subjects (Finn et al., 2015; Shen et al., 2013). This atlas has 

proven to be reproducible and reliable (Shen et al., 2013), beneficial in understanding 

cross-subject variability, and useful for developing predictive models of behavior (Finn et 

al., 2015; Rosenberg et al., 2013; Rosenberg et al., 2017; Shen et al., 2017). Given this 

past performance, this 268-node atlas represents a reasonable way to operationalize the 

brain’s sub-units in network analyses.  However, this atlas was defined at the group-level 

and therefore might not account for the individual variability in node definitions. To 

verify that the observed network reconfigurations are not confounded by the group-
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defined nodes, we repeated our analyses, using individualized node atlases as our starting 

point (see Supplementary Materials). Similar results were obtained (Figure S12), 

suggesting that the state-evoked network reconfigurations are not derived by the 

incongruency of signals within a node, but are robust observations of brain function. We 

would anticipate similar results with other atlases of a similar scale. 

Just as the core functional connectivity patterns across the whole-brain are stable, 

underlying these functional patterns is a relatively fixed structural connectivity 

infrastructure. That is, the changing functional patterns on a moment to moment or task to 

task basis, are not due to rapidly changing structure.  While there is a large literature 

where investigators have performed network analysis on structurally defined networks 

these two approaches are not mutually exclusive and this flexible functional organization 

is acknowledged to sit on top of a relatively fixed structural network.  

Moving forward it will be important to relate state-evoked network reorganization 

with individual differences in behavior and/or clinical measures. Future work could 

quantify the extent to which subjects with similar node to network reconfiguration 

patterns are also similar in state, behavioral, or clinical measures; potentially grouping 

homogeneous subjects based on their NNA phenotypes. This methodology could be 

particularly compelling when applied to subjects with different clinical, 

neurodevelopmental, and aging categories. 

 

 Conclusion 

We showed that the functional network organization of the brain is not fixed, but rather 

that functional networks reconfigure dynamically, in predictable ways, as a function of 
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cognitive state. Future work should consider state-evoked reconfigurations when studying 

changes in connectivity across different task-states. Such an approach will hopefully 

allow us to begin to relate individual differences in network reconfiguration to individual 

differences in behavior or clinical symptoms. 

 

 Code availability 

The 268-node functional parcellation is available online on the BioImage Suite NITRC 

page (https://www.nitrc.org/frs/?group_id=51). MATLAB, R (for graph visualization), 

and Python (for predictive modeling) scripts were written to perform the analyses 

described; these code are available on GitHub at 

https://github.com/YaleMRRC/Network-Parcellation-Tasks.git. The graph visualization 

is released separately under the terms of GNU General Public License and can be found 

here: https://github.com/YaleMRRC/Network-Visualization.git. 
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 Supplemental Materials 

7.1 Local versus global exemplar set 

In the main analysis, exemplars were identified such that they were common across all 

functional states (denoted as “global exemplars”). This was to assure that the exemplars 

are agnostic to the states, and thus the proceeding predictive analyses were not biased by 

the prior knowledge of the state. In order to assure that the results were not confounded 

by introducing common exemplars across all states, we repeated the exemplar-based 

parcellation, this time restricting the analysis to each state separately. This approach 

yielded nine different sets of exemplars (denoted as “local exemplars”), one for each 

functional state. We compared the parcellation results from global and local exemplars 

using two separate measures. First, we calculated the Dice coefficient between the two 

group-level parcellation vectors (Figure S2a) for 𝐾	 = 	2	– 50. Second, we computed the 

Hamming distance between the community co-membership matrices derived from each 

parcellation. For every subject in each state, a network co-membership matrix (𝐴) was 

constructed from the two parcellation schemes: (i) using global exemplars (𝐴cdZ]`d), and 

(ii) using local exemplars (𝐴dZX`d). The elements of this matrix were calculated as 

follows: 

 𝑎5> = £1, if	node		𝑖	and	node	𝑗	were	assigned	to	the	same	network					
0, otherwise																																																																																														 (1) 

The similarity between the two co-membership matrices (𝐴cdZ]`d and 𝐴dZX`d) were 

calculated as 1 minus the Hamming distance between the vectorized form of the two 

matrices. The result is displayed in Figure S2b for 𝐾	 = 	2	– 	50. 
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7.2 Number of networks (𝑲) selected for the analysis 

To choose the optimum number of networks, we examined the changes in network 

assignments by adding a new exemplar (or equivalently, adding a new network). For 

every state, we calculated the number of nodes that change their network membership as 

the number of exemplars, 𝐾, increases from 2 to 50. This was employed for every subject 

and state separately (Figure S3). Among the 𝐾s for which the number of changes were 

locally maximum, i.e. 𝐾 = {12, 17, 31, 45}, we chose 𝐾 = 12 as the minimum number 

of networks after which the memberships stabilized with significantly less changes in the 

NNAs. 

 

7.3 Distribution of behavioral domains and paradigm classes across entropy classes 

Behavioral domain and paradigm class profiles were defined by referencing the 

BrainMap Functional Database's experimental meta-data [www.brainmap.org], which 

represents 62,038 x-y-z foci from 10,467 functional human brain imaging task-activation 

experiments representing 27,820 subjects. These task-activation experiments represent 55 

behavioral domains and 108 paradigm classes (Barron and Fox, 2015; Fox et al., 2005). 

Behavioral domains include categories and subcategories of mental processes isolated by 

the experimental contrasts. They comprise five main categories: cognition, action, 

perception, emotion, and interception. Paradigm classes include the experimental tasks 

isolated by an experimental contrast (see http://brainmap.org/scribe for more information 

on the BrainMap taxonomy). Profiles were computed within each node (or network) as a 

z-score of the forward inference likelihood that a particular behavioral domain or 

paradigm class is reported within that node (or network) [P(Activation | Behavioral 
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Domain) or P(Activation | Paradigm Class)] normalized by the likelihood expected if 

they were uniformly distributed throughout the brain (Lancaster et al., 2012). A high z-

score indicates a high specificity of a particular behavioral domain or paradigm class for 

that node (or network). To create a profile for each node (or network), z-scores were 

thresholded at z>1.96 (associated with 95% confidence interval or p<0.05) and summed 

over all behavioral domains or paradigm classes. Profiles were computed using 

MATLAB.  

 

7.4 Rich club organization of the brain across states 

Given the observed strong connectivity between the steady nodes (Figure 6), we 

hypothesized that steady nodes contribute most to the rich club organization of the brain 

(Van Den Heuvel and Sporns, 2011). To test our hypothesis quantitatively, we computed 

and visualized the rich club regime of the brain network for every functional state. For 

every state, we computed to what extent high-degree nodes link preferentially to each 

other, as measured by rich club coefficient (Colizza et al., 2006; Van Den Heuvel and 

Sporns, 2011), 𝜙(𝑘): 

 𝜙(𝑘) = 	
2𝐸e)

𝑁e)(𝑁e) − 1)
, (2) 

where 𝐸e) is the number of edges in the subgraph containing all the nodes with degree 

greater than 𝑘, and 𝑁e) represents the number of nodes with degree greater than 𝑘. 

Consequently, we compared the 𝜙(𝑘)s with the rich club coefficients obtained from an 

ensemble of 1000 random networks (𝜙Y`bf(𝑘)), computed by shuffling the edges of the 

original network while preserving the degree distributions. We computed and visualized 
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the normalized rich club coefficients by dividing the empirical 𝜙(𝑘) with the average of 

𝜙Y`bf(𝑘): 

 
𝜙bZYa(𝑘) = 	

𝜙(𝑘)
avg	[𝜙Y`bf(𝑘)]

. (3) 

Rich club coefficients, 𝜙(𝑘), were calculated using “rich_club_wu” function, and 

random networks were calculated using “randmio_und” function (average number of 

rewiring = 50) from Brain Connectivity Toolbox (Rubinov and Sporns, 2010). 

For every state, we computed the rich club regime (Figure S8a, the shaded gray area) 

as the range of 𝑘s for which the rich club coefficient of the empirical network was 

significantly larger than the null distribution (permutation test; p<0.05). To illustrate the 

rich club regions in every state, we used the average 𝑘 within the rich club regime of 

every state (𝑘_gY7[gZdf: Figure S8a, the triangle marker). 

To demonstrate that steady nodes contribute most to rich club regime, we computed 

the ratio of the rich club nodes (𝑘 > 𝑘_gY7[gZdf) within each entropy class (Figure S8b). 

As displayed in Figure S8b, the steady class has the maximum ratio of the rich club 

nodes, highlighting the significant contribution of the steady nodes to the rich club 

organization of the brain in all states. 

 

7.5 Individualized node atlases 

To rule out the possibility that the network reconfigurations are simply driven by group-

defined nodes with mixed signals, we repeated our network delineation analysis with 

individualized node definitions. We created the individualized atlas for every individual 

in HCP data set by employing our recently developed parcellation algorithm using data 
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from REST1 and REST2 runs with left-right phase-encoding (LR). The algorithm starts 

from the initial group atlas and individualizes it using a variant of exemplar-based 

clustering method (see (Salehi et al., 2018) for more details). One advantage of this 

algorithm is that correspondence of nodes across individuals and with the initial group 

atlas is maintained, making for straightforward comparisons.  

We repeated our network delineation algorithm with individualized nodes. Similar 

network reconfigurations were observed (Figure S12a). To verify that these network 

reconfigurations are specific to each state, we repeated our cross-validated predictive 

model to predict (or decode) the cognitive state of each individual based solely on the 

NNAs, which are generated from individualized nodes. Again, significant prediction 

accuracies were obtained (Figure S12b), suggesting that the network reconfigurations are 

reliable and state specific, even when starting from individualized nodes.  

 

7.6 Reliability comparison across flexibility classes 

We investigated the relationship between the flexibility classes and the test-retest 

reliability of functional connectivity. Reliability was measured by the intraclass 

correlation coefficient (ICC; (Shrout and Fleiss, 1979). Following the work by Noble et 

al. (Noble et al., 2017), we estimated the reliability values for every node in the atlas by 

taking the mean test-retest reliability of all edges associated with that node. We then 

compared the reliability values between every pair of Steady, Flexible, and Transient 

classes using two-tailed Wilcoxon rank sum test and corrected for multiple comparisons 

using Bonferroni correction (Figure S11). We observed that there is no significant 

difference in the ICC values across the three flexibility classes (Figure S11).  
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Figure S1. The fuzzy (probabilistic) network definitions for 𝐾 = 12 networks. Every network 
is displayed by opacity of its nodes reflecting the likelihood of their NNA. The likelihood of each 
NNA is defined as the number of times this assignment is observed across all population-level 
state-specific parcellations, divided by the number of states (i.e., 9). 
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Figure S2. Similarities between the parcellation schemes calculated from global and local 
exemplars. a) Dice coefficient between the parcellation schemes, computed by local and global 
exemplars, are displayed for every state. b) 1 – Hamming distance between the node-to-network 
co-membership matrices, computed by the global and local parcellation schemes, are displayed 
for every state. 
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Figure S3. The number of changes in the network memberships for different 𝐾 values. For 
each functional state, the number of nodes that change their NNA when a new exemplar 
(representing a new network) is calculated. The number of changes is equal to the number of 
nodes that are assigned to the newly defined network. 
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Figure S4. State-decoding accuracies and important features. The predictions accuracies for a 
10-fold cross-validated predictive model using the parcellation schemes derived from the 
exemplars (nodes with fixed NNAs both across states and subjects, representing each network) 
calculated using the entire population (not just the training set as in Figure 2). After parcellating 
the entire population, a GBM is trained and tested in a 10-fold cross-validated setting where the 
GBM is trained on 9 folds of the data and used to predict the state for the left-out fold. a) The 
binary classification accuracies are displayed for all number of networks (𝐾 = 2 − 50). For every 
pair of tasks (task1, task2) we restricted our analysis to the data derived from the two tasks, 
yielding a population of 718 × 2 subjects with two outputs, task1 or task2. b) The binary 
classification accuracies averaged over number of networks ranging from 2 to 50. c) The 8-class 
classification accuracies are displayed for all number of networks (𝐾 = 2 − 50). The gray error 
bars represent the chance accuracy, computed as the mean and standard deviation of 1000 
permutations. d) The distribution of the feature (node) importance across the three entropy 
classes. Interestingly, the flexible class comprises of the most important nodes for state decoding. 
Two-tailed t-test between every pair of steady, flexible, and transient class was performed and 
Bonferroni corrected for multiple comparisons, *** p<1×10-16. As expected, the result is similar 
to Figure 2, despite the difference in the calculated exemplars and the predictive pipeline. 
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Figure S5. Entropycross-state and Entropycross-subject for all 268 nodes using both 
population-based and subject-based methods for 𝐾 = 12. For every node, the two entropy 
measures (Entropycross-state and Entropycross-subject) are calculated using histograms derived from the 
population-based analysis (with 100 iterations) and the subject-based analysis (across 718 
subject). In the population-based analysis, at every step the entire population is divided into two 
equal size sets (each with 359 subjects) and the population-level parcellation is calculated for 
each set using the winner-takes-all strategy. This is employed 50 times generating a distribution 
of 100 population-level parcellations. As expected, the entropies calculated from the two 
population- and subject-based approaches are significantly correlated (cross-state entropy, rs = 
0.79, p<1×10-58; corss-subject entropy rs=0.77, p<1×10-53; rs, Spearman’s correlation coefficient). 
However, the entropies calculated from the subject-based approach are significantly higher on 
average due to their larger sensitivity to network variations (two-tailed Wilcoxon rank sum test, 
p<2×10-16). 
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Figure S6. Visualization of flexibility classes, defined based on NNA reconfigurations, as a 
continuum. This is the continuous illustration of the flexibility classes defined in Figure 3 in the 
main manuscript. a) For every node, we calculated two measures of variability: the NNA entropy 
across states (Entropycross-state) and the NNA entropy across subjects (Entropycross-subject). We used 
two different colormaps for the two dimensions of entropy variation. Nodes are colored based on 
the linear combination of these two colormaps, such that warmer colors (red and orange) indicate 
lower cross-subject and cross-state entropy values; as we move towards yellow colors, we 
increase the cross-state entropy values, and as we progress towards green colors, we increase the 
cross-subject entropy values. b) Visualization of the entropy values [from part (a)] on the brain, 
using the same colormaps as part (a).  
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Figure S7. Functional characterization of entropy classes at the network level. The 
distribution of behavioral domains and paradigm classes are calculated across entropy classes. A 
network-level meta-analysis was performed using BrainMap Functional Database's experimental 
meta-data representing 55 behavioral domains and 108 paradigm classes. Profiles were computed 
within each of the 36 class-network pairings (3 entropy classes × 12 functional networks) as the 
forward inference likelihood z-scores, thresholded at z>1.96, and summed over all behavioral 
domains or paradigm classes. Colored circles represent the parts of each network that are 
associated with each entropy class (colored accordingly). The shaded bars display the mean 
within each entropy class. 
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Figure S8. Rich club organization of the brain across states. a) Normalized rich club 
coefficient curves (𝜙5#"6) are visualized for all functional states. The dashed line displays 
𝜙5#"6 = 1. The shaded gray area displays the rich club regime: 𝑘s for which the empirical rich 
club coefficients are significantly higher than an ensemble of 1000 null networks (permutation 
test; p<0.05). The triangle marker represents the average 𝑘 in the rich club regime, which was 
used as the threshold for defining rich club nodes (𝑘&7"($7#89). b) The ratio of the rich club nodes 
(𝑘 > 𝑘&7"($7#89) within each entropy class is visualized for all functional states. S: Steady, F: 
Flexible, T: Transient. Consistent with our hypothesis, the steady nodes have the largest portion 
of rich club nodes, contributing most to the rich club organization of the brain in all states. 
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Figure S9.  Head motion comparison across functional conditions. Mean frame-to-frame 
displacement is computed for every functional condition, displayed as a box plot over sessions, 
where the central mark indicates the median, and the bottom and top edges of the box indicate the 
25th and 75th percentiles, respectively. The whiskers extend to the most extreme data points not 
considered outliers, and the outliers are plotted individually. A two-tailed Wilcoxon rank sum 
test was performed on the mean frame-to-frame displacement between every pair of functional 
condition, and corrected for multiple comparisons using Bonferroni correction. b) P-values are for 
the pairwise Wilcoxon signed-rank test, performed on the mean frame-to-frame displacement, 
and corrected for multiple comparisons using Bonferroni correction. 
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Figure S10. Cross-state network reconfigurations and state predictions after trimming all 
task data into 176 time points. To rule out the possibility that the results are derived by 
differences in the number of time frames across conditions, we repeated our analysis this time 
trimming all the runs to have equal length (equal to the length of the shortest task, SOCIAL, with 
176 time points). We constructed the individualized state-specific parcellation for each individual 
in each functional condition using the matched data. a) The network reconfiguration estimated by 
the number of nodes that change their network assignment across every pair of states. The 
observed pattern is very similar to that of the original analysis (Figure 1 in the manuscript). b) 
Accuracy of the state predictions based on the NNAs derived from the parcellations with matched 
data. 
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Figure S11. Distribution of the functional connectivity reliability (ICC) across flexibility 
classes. Reliability is measured by intraclass correlation coefficient (ICC). For every node in the 
atlas, the reliability is estimated as the mean test-retest reliability of all edges associated with that 
node. For each flexibility class, the reliability values are displayed as a box plot, where the central 
mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. The whiskers extend to the most extreme data points not considered 
outliers, and the outliers are plotted individually. A two-tailed Wilcoxon rank sum test was 
performed between every pair of steady, flexible, and transient class and corrected for multiple 
comparisons using Bonferroni correction; ns=not significant. 
  



 

 

 

178 

 
 
Figure S12. Cross-state network reconfigurations and state predictions starting from 
individualized node atlases. We constructed the individualized state-specific parcellation for 
each individual in each functional condition, this time starting from individualized nodes. For 
every individual, we constructed an individualized atlas using data from REST1 and REST2 runs. 
a) The network reconfiguration estimated by the number of nodes that change their network 
assignment across every pair of states. The observed pattern is very similar to that of the original 
analysis (Figure 1 in the manuscript). b) Accuracy of the state predictions based on the NNAs 
derived from the parcellations computed from the individualized atlas. 

 



Chapter 5: A Submodular Approach to Create Individualized 

Parcellations of the Human Brain 

 

 

 

Abstract 

Recent studies on functional neuroimaging (e.g. fMRI) attempt to model the brain as a 

network. A conventional functional connectivity approach for defining nodes in the 

network is grouping similar voxels together, a method known as functional parcellation. 

The majority of previous work on human brain parcellation employs a group-level 

analysis by collapsing data from the entire population. However, these methods ignore 

the large amount of inter-individual variability and uniqueness in connectivity. This is 

particularly relevant for patient studies or even developmental studies where a single 

functional atlas may not be appropriate for all individuals or conditions. To account for 

the individual differences, we developed an approach to individualized parcellation. The 

algorithm starts with an initial group-level parcellation and forms the individualized ones 

using a local exemplar-based submodular clustering method. The utility of individualized 

parcellations is further demonstrated through improvement in the accuracy of a predictive 

model that predicts IQ using functional connectome. 
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 Introduction 

Functional connectivity analysis, as derived from BOLD fMRI, has shown promising role 

in establishing a better understanding of the functional organization of the human brain. 

Recent studies have shown that functional connectivity patterns of individuals are unique 

with large inter-subject variability (Finn et al., 2015). However, to date, the majority of 

previous work has ignored this inter-subject variability and created functional 

parcellations that are on average optimal for a group of subjects, rather than for any 

individual subject (Craddock et al., 2012; Shen et al., 2013). Such approaches have three 

key limitations. First, they require the usage of the entire dataset to construct an atlas, 

resulting in significant computational needs in the case of large datasets. Second, in the 

case when a new parcellation is created for the subjects at hand, there may not be known 

correspondence between the nodes in the new parcellations and previous ones, making it 

difficult to replicate and validate results across populations. Finally, they do not capture 

individual differences in the functional organization for each subject. This is particularly 

relevant for interventions that are focused on improvements in single patient, rather than 

group-level effects. Creating functional parcellation that accounts for an individual’s 

functional organization while retaining explicit node correspondence to previously 

validated models remains a need for personalized applications. 

Here, we propose a novel method to individualize the whole-brain functional 

parcellations consisting of hundreds of nodes (or parcels). This approach starts with a 

generic group parcellation and morphs it to account for the individual’s functional 

organization. To individualize an existing parcellation, we use exemplar-based clustering 

and identify local exemplars for each node in the parcellation by optimizing a monotone 
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submodular function using greedy algorithm. By starting with a group-level parcellation 

and the usage of exemplars, we retain known correspondence between nodes across 

individuals and across other studies.  The individualization is applied to each subject 

independently, providing an online algorithm that uses only one individual data in a 

streaming fashion. 

The remainder of the manuscript is organized as follows. First, we review previous 

group-level and individual-level parcellation approaches. Second, we formally introduce 

our proposed submodular approach. Third, we evaluate our approach against a non-

individualized group-level parcellation using internal clustering evaluation measures and 

behavior prediction of IQ. Last, we offer concluding remarks.  

 

 Previous Work 

Delineating functional boundaries either at the network-level (~5-20 clusters) or the 

node-level (~100-500 clusters) is a rich area of research with many proposed solutions. A 

non-exhaustive list of previous methods include k-means (Wang et al., 2015), hierarchical 

clustering (Meunier et al., 2010), spectral clustering (Craddock et al., 2012; Shen et al., 

2013), and boundary mapping (Laumann et al., 2015). However, most of these 

approaches include one of the weaknesses stated above. Conceptually, the most similar 

previously published approach to our proposed work is the individualized network 

parcellation algorithm proposed in Wang et al. (Wang et al., 2015). This approach uses a 

k-means algorithm to individualize an existing network-level parcellation of 18 clusters. 

Although k-means algorithms yield satisfactory results for problems with a small 

number of clusters, such as 18 networks, they generally suffer from sensitivity to the 
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initialization and are more likely to converge to local optima. Thus, they may not be 

generalizable to problems with a large number of clusters such as individualization of a 

200-500 node functional parcellation. In contrast, our submodular exemplar-based 

approach restricts the selection of the exemplars to the actual observed data points. By 

doing so, instead of minimizing a continuous loss function, we maximize a discrete 

submodular function for which the classical greedy algorithm provides the best 

approximation to the optimal solution. This approach is empirically more robust to noise 

and outliers than k-means methods. 

 

 Proposed Submodular Approach 

Our proposed algorithm is comprised of three steps, illustrated in Figure 1. In the first 

step, an already defined group-level parcellation is warped to the individual’s data, while 

accounting for the individual-specific gray-matter masks. Thus, every voxel in the 

individual’s brain is assigned to one of the 𝑁 parcels defined by the group. In the second 

step, an exemplar is identified for each parcel by employing a submodular function 

optimization applied locally to each individual. In the third step, each voxel is assigned to 

the closest exemplar, where the closeness can be defined using any nonnegative 

similarity measure.  

 

3.1 Exemplar-based clustering 

Exemplar-based clustering is a method of data-summarization through identifying the 

most representative elements in the massive data, known as exemplars (Mirzasoleiman et 
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al., 2016). One classic approach for identifying such exemplars is solving the k-medoids 

problem, by minimizing the following loss function: 

 𝐿(𝑆) =
1
|𝑉|bmin

/∈:
𝑑(𝑣, 𝑒)

%∈1

, (1) 

where, 𝑑:	𝑉 × 𝑉 → 𝑅 defines the pair-wise dissimilarity between the elements of the 

ground set 𝑉. 𝐿(𝑆) measures how much information is lost by representing the entire 

dataset with its exemplars, i.e., the subset 𝑆. Except for special cases, the k-medoids 

problems are NP-hard. By introducing an appropriate auxiliary element 𝑣!, the 

minimization of (1) can be turned into the maximization of a monotone submodular 

function 𝑓, as follows: 

 𝑓(𝑆) = 	𝐿(𝑣!) − 	𝐿(𝑆

∪ 𝑣!), 
(2) 

for which general greedy algorithms provide an efficient 1 − 1/e ≈ 0.63 approximation 

of the optimal solution. For the choice of auxiliary element, any vector 𝑣! whose distance 

to every data point is greater than the pairwise distances between the data points, can 

serve the purpose. In the sequel, a formal definition of submodularity, and greedy 

algorithms are covered. 
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Figure 1. Individualized parcellation pipeline. Step 1: Registration of group-level parcellation 
to the individual space. Step 2: Identification of local exemplars for every node in individual 
brain. Step 3: Assignment of every voxel in individual brain to one of the exemplars spanning the 
entire brain. 
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3.2 Submodular functions 

A function 𝑓: 21 → 𝑅	is submodular if for every 𝐴 ⊆ 𝐵 ⊆ 𝑉 and 𝑒 ∈ 𝑉\𝐵 it holds that 

𝑓(𝐴 ∪ 𝑒) − 𝑓(𝐴) 	≥ 𝑓(𝐵 ∪ 𝑒) − 𝑓(𝐵). In other words, adding an element 𝑒 to a set 𝐴 

increases the utility more than (or equal to) adding it to 𝐴’s superset, 𝐵, suggesting a 

natural diminishing returns. An important subclass of submodular functions (used in the 

proposed algorithm) are those which are non-negative and monotone. A function 𝑓: 21 →

𝑅 is monotone if for every 𝐴 ⊆ 𝐵 ⊆ 𝑉, 𝑓(𝐴) ≤ 𝑓(𝐵). 

 

3.3 The greedy algorithm for optimization of the submodular function 

Maximizing a non-negative monotone submodular function subject to a cardinality 

constraint, i.e.,  

 max
:⊆1

𝑓(𝑆) 

s. t. |𝑆| ≤ 𝐾, 
(3) 

is NP-hard (Feige, 1998). However, Nemhauser et al. proved that a simple greedy 

algorithm provides the best approximation (Nemhauser et al., 1978). The greedy 

algorithm starts with an empty set 𝑆! = ∅, and at each iteration 𝑖, it adds the element 𝑒5 ∈

𝑉 such that the marginal gain is maximized, i.e., 

 𝑒5∗ = argmax
/∈1

Δ𝑓(𝑒|𝑆59*) ≔	 argmax/∈1
𝑓(𝑆59* ∪ 𝑒) − 𝑓(𝑆59*),	 (4) 

 𝑆5 = 𝑆59* ∪ 𝑒5∗ (5) 

The algorithm continues until the cardinality constraint is reached, i.e., |𝑆| = 𝐾. 

Herein, we attempt to represent each predefined parcel by one exemplar, thus 𝐾 = 1. 

Note that by increasing the number of exemplars per parcel, one can derive a finer-



 

 

 

186 

grained parcellation scheme. Similarly, by skipping some of the parcels in the exemplar 

identification, one would derive a coarser parcellation, yielding to identification of 

functional networks (rather than nodes). 

Local exemplar-search algorithm (i.e., searching for exemplars over each parcel 

independently, rather than the entire brain) can have global interpretations by defining a 

local dissimilarity measure such that for every node 𝑣5 ∈ cluster5, the dissimilarity is 

defined as: 

 
«
𝑑s𝑣5 , 𝑣>t = ∞, 𝑑s𝑣> , 𝑣5t = 0, for	𝑣5 ∈ cluster5 	and	𝑣> ∉ cluster5 	
𝑑s𝑣5 , 𝑣>;t = ‖𝑣5 − 𝑣5;‖,,																			for	𝑣5 ∈ cluster5 	and	𝑣5; ∈ cluster5 		

 (6)     

This rich choice of dissimilarity measure is possible for exemplar-based methods 

(unlike many other classical algorithms). Dissimilarity measures only need to be 

nonnegative and do not require symmetry or triangle inequality properties. Finally, every 

voxel in the brain is assigned to the closest exemplar, yielding to an individualized 

parcellation with the same number of nodes as the initial group-level atlas (in this case, 

𝑁 = 268). Of note, the multi-step exemplar-based parcellation algorithm preserves a 

straightforward mapping between the parcellation of individuals to each other and to the 

group, as each node is represented by an exemplar derived from the same node in the 

group. Thus, we do not have to run another algorithm to retrieve the correspondences. 

This facilitates direct comparison of individuals with each other and with the group. 

Moreover, the greedy algorithm starts from an empty set and gradually adds elements, 

thus, there is no stochastic initialization process to affect the results. Herein, we used an 

accelerated version of the greedy algorithm, called lazy greedy (Minoux, 1978).  
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 Methods 

4.1 Dataset 

For evaluation, we used a set of 200 randomly selected subjects (106 females, age 22-35) 

obtained from the Human Connectome Project (HCP) S900 release (Van Essen et al., 

2013). Resting-state fMRI scans obtained on day 1 using the left-right phase-encoding 

direction were used. All data were preprocessed with the HCP minimal preprocessing 

pipeline. For calculating parcellation schemes, we further employed a Gaussian 

smoothing kernel with FWHM = 12 mm to each individual data. However, the rest of the 

analyses (i.e., forming the functional connectivity and the evaluation) were performed 

over the non-smoothed data. To relate these parcellations to individual behavior, we used 

fluid intelligence (IQ) as assessed using a form of Raven’s progressive matrices with 24 

items (Bilker et al., 2012) (PMAT24_A_CR, mean = 16.28, s. d. = 5.01, range = 4 −

24). Two subjects were excluded from evaluation involving behavior due to the missing 

IQ data.  

 

4.2 Evaluation 

We used the Shen functional parcellation (Finn et al., 2015; Shen et al., 2013)as the 

starting parcellation for our individualization approach and evaluated our approach 

against this parcellation. Note that here we are testing whether an individualized 

parcellation is better than the original group-level parcellation, supporting the utility of 

our approach. We do not aim to quantify which initial atlas results in the best 

individualized parcellation. We expect an individualized parcellation starting from any 
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generic group-level parcellation to do better than the group-level parcellation, and that 

our results using the Shen parcellation will generalize to others. 

We used two independent techniques for evaluation. First, the clustering quality was 

validated using two internal validation measures: Homogeneity and Davies-Bouldin 

index (DB). Second, we investigated whether the individualized parcellation increased 

the performance accuracy of predictive models derived from functional connectivity 

matrices.  

 

4.3 Internal clustering validation 

An ideal parcellation algorithm defines functionally homogenous nodes by grouping 

voxels with similar timecourses. Here, we assessed the homogeneity by calculating the 

average cross-correlations within each node, and averaging over all the nodes in the 

parcellated brain. We also calculated the DB index to assess the clustering ability in 

maximizing the intra-node compactness and the inter-node separation. 

 

4.4 Predicting IQ 

Functional connectivity matrices were computed using the proposed individualized 

parcellation scheme and the group-level parcellation, using standard connectivity 

methods.  

After preprocessing, the average of the timecourses within each node was calculated, 

and the correlation between the averaged timecourses was computed, yielding to a 𝑁 × 𝑁 

connectivity matrix for each subject, where 𝑁 = 268 for both parcellations. 
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We employed the prediction framework used in Finn et al. (Finn et al., 2015) to build 

a predictive model of IQ based on 𝑛 − 1 subjects (training set). The model was then 

tested over the left-out-subject (testing set) by predicting the IQ score. To assess the 

performance of the predictive model, we reported the Pearson correlation and the root 

mean squared error (RMSE) between the predicted scores and the observed IQ values.  

 

4.5 Inter-subject variability 

We further investigated to what extent the proposed individualized parcellation accounts 

for the inter-subject variability. We quantified this variation using normalized Hamming 

distance between each individual and the group parcellation. 

 

 Results 

5.1 Internal clustering validation 

Figure 2A displays the homogeneity scores (Left) and DB indices (Right) derived from 

both parcellation methods. The individualized parcellations have significantly higher 

level of homogeneity (two-tailed 𝑡 = 4.29, 𝑝 < 2.3𝑒 − 5), and significantly lower level 

of DB index (two-tailed 𝑡 = 12.5, 𝑝 < 2.2𝑒 − 16), both of which indicate a higher 

clustering quality. These results suggest that nodes derived from individualized 

parcellations are functionally more coherent, and, hence, can better capture individual 

differences in the functional organization of the brain.  
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Figure 2. Quantitative results for assessing the quality of parcellations. A) Homogeneity 
(Left) and DB index (Right) comparison between the two parcellation methods. ∗∗ 𝑝 < 2.3𝑒 − 5,
∗∗∗ 𝑝 < 2.2𝑒 − 16, two-tailed t-test. B) Comparing the predicted and observed IQ scores (gF) 
(𝑛 = 198 subjects) for the proposed individualized parcellation (Left), and Shen parcellation 
(Right). 𝑝 < 1𝑒 − 15, Hotelling’s t-squared test. 
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5.2 Predicting IQ 

Predicted IQ scores are plotted versus the observed IQ values in Figure 2B. Both group-

level and individual-level parcellations generated significant predictions (group-level 

parcellation, 𝑟 = 0.15, 𝑝 < 3.5𝑒 − 2, RMSE = 5.07; individualized parcellation, 𝑟 =

0.29, 𝑝 < 2.5𝑒 − 5, RMSE = 4.76). However, the predictions using the individualized 

parcellations were significantly more accurate (Hotelling’s 𝑡 = 6.0, 𝑝 < 1𝑒 − 15, 

comparison of two overlapping correlations based on dependent groups). The increased 

predictive power of the individualized parcellations indicates that our method preserves 

inter-subject variability and better accounts for individual’s behavior. 

 

5.3 Inter-subject variability 

The average Hamming distance (normalized) between the individualized parcellations 

and the initial group parcellation is 𝑑̅ 	= 	0.45	(s. d. = 	0.03). Since the Hamming 

distance captures the number of mismatches between the voxel-to-node assignment 

vectors, this result suggests that the proposed method on average changes ~45% of the 

initial group-level parcellation to account for the individual-specific functional node 

organization. 

 

 Conclusion 

We developed a novel approach to the individualized whole-brain functional parcellation, 

starting from a generic population-level atlas. Our approach translates from the group to 

the individual by identifying local exemplars, or voxels, within each node, that best 
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represent the timecourses of the remaining voxels in that node. The local exemplars are 

efficiently determined by optimizing a submodular utility function with greedy algorithm. 

After defining the local exemplars, the remaining voxels are assigned to the closest 

exemplar, yielding to a personalized parcellation that retains the explicit node 

correspondence to the population-level parcellation.  

We showed that our proposed individualized parcellation yields a more homogenous 

node definition, and improves the predictive power of the resulting functional 

connectivities. Together, these findings highlight the need for more personalized 

parcellations, even at the node-level. 

Future work will include further evaluation of our proposed approach including testing 

other existing group-level functional parcellations. We expect that our results using the 

Shen parcellation will generalize to parcellations created by other methods. Though it is 

possible that different parcellations with different number of nodes may see greater or 

lesser improvements with individualizations. Finally, our evaluations only included 

healthy controls. We will also begin to apply this approach to clinical populations, where 

we expect a different group-level functional organization than controls, and hence, such 

personalized approaches may show even greater improvements. 



Chapter 6: Individual parcellations are unique and reliable, 

forming an identifying fingerprint 

 

 

 

Abstract 

Human brain is a network consisting of spatially distributed but functionally connected 

nodes. Advances in Neuroimaging techniques such as fMRI have enabled the 

reconstruction of this network at different scales. A conventional functional network 

analysis attempts to define the nodes in the brain by grouping voxels with similar time 

series, an approach known as parcellation. Traditional approaches to human brain 

parcellation have taken a group-level direction by collapsing data from all individuals in 

a group and generating a parcellation that is ‘on average’ optimal for everyone. While 

these techniques hold a great potential in developing a general blueprint for the brain 

functional organization, they do not capture the substantial inter-individual variability in 

brain function. Using data from multiple subjects and multiple sessions, here we establish 

that individual parcellations are unique and reliable, such that they can act as an 

identifying ‘fingerprint’. We further show that that while all functional networks possess 

identification power of some sort, dorsal attention network, frontoparietal network, and 

language network emerged as the most distinct across individuals. 
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 Introduction 

Recent advances in Neuroimaging techniques have extended our understanding of the 

human brain functional organization. One widely used functional Neuroimaging 

technique, known as functional connectivity (FC) analysis, attempts to model the brain as 

a network, where different brain regions (or nodes) are connected by an edge if there is a 

synchrony in their temporal signals. Identifying nodes in this pipeline is a crucial step. 

Building the network at the voxel-level, with each voxel representing a node, would 

result in a noisy and high-dimensional model, making the subsequent connectivity 

analysis intractable (Thirion et al., 2014). An alternative approach is to define nodes by 

grouping voxels with similar time series, a technique known as human brain functional 

parcellation (or clustering). Since node definition is the first step in the functional 

connectivity analysis pipelines, it is crucial to define nodes that are functionally 

homogeneous. Failing to do so could propagate error to the subsequent steps and result in 

erroneous outcomes. Despite the recent advances in this field, the definition of the 

network nodes in the brain remains an open question (Eickhoff et al., 2015; Sporns, 

2011). 

Typically, human brain parcellation studies take a group-level inclination by 

collapsing data from all the subjects in a group to generate the best definition of the nodes 

that are optimal ‘on average’. These group-level analyses have been accomplished either 

by averaging the subjects connectivity matrices (Power et al., 2011; Thomas Yeo et al., 

2011) or by concatenating time courses from all subjects (Beckmann et al., 2005; Smith 

et al., 2009). There are four key limitation to these group-level parcellations: First, they 

require the usage of the entire dataset to construct an atlas. In addition to a significant 
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computational and space burden, this limits their usage in clinical settings where often 

subjects are scanned gradually in a streaming fashion. Second, when averaging data, the 

importance of the correct registration is highlighted, as any mis-registration would result 

in mis-alignment across subjects, potentially yielding erroneous group averages. Third, 

when a new parcellation is created for the available subjects, there may not be precise 

correspondence between the new definition of the nodes and the old ones, making it 

challenging to validate and replicate results across population. Finally, they are limited in 

capturing individual-specific information and preserving individual differences in brain 

functional organization. This is in particular relevant for clinical interventions where the 

focus is on improvements in single patients, rather than group-level effects. 

To overcome the above-mentioned limitations of group-level parcellations, 

individualized parcellation approaches have recently received increased attention. A 

number of parcellation algorithms have been introduced using advanced extension of the 

standard clustering techniques such as k-means (Kahnt et al., 2012), hierarchical 

clustering (Blumensath et al., 2013; Moreno‐Dominguez et al., 2014), and spectral 

clustering (Craddock et al., 2012; Shen et al., 2013). Next section provides an overview 

of the individualized parcellation techniques in the field. 

 

We have recently developed an individualized parcellation algorithm, which starts 

from a group-based template and warps it to adapt to each individual data (Salehi et al., 

2017a). Here, we build up on our previous work to demonstrate that the individualized 

parcellations are reliable and reproducible across sessions of resting-state. Our results 

show that the parcellations are unique enough to each individual and reliable enough 



 

 

 

196 

across sessions to act as an identifying ‘fingerprint’. Further analysis shows that while the 

entire brain contributes to the individual identifications, dorsal attention network, 

frontoparietal network, and language network emerge as the most distinctive ones, 

suggesting the relevance of the individual-specific topographic features to the higher-

level cognitive functions. 

 

 Previous Work 

Previous work has introduced a number of different approaches to human brain 

functional parcellation at the individual-level. Most of these approaches use resting-state 

functional connectivity data to delineate the brain into functionally coherent regions 

(Eickhoff et al., 2015; Thomas Yeo et al., 2011). Resting-state functional connectivity 

has been attractive for parcellation studies as (i) it is known to reflect the intrinsic 

functional organization of the brain which is not modulated by any behavioral task, and 

(ii) it does not require active engagement of subjects in any task, thus unburdening the 

experimental design and subject training demands. Nonetheless, there are also studies 

that have considered data from task-based fMRI, and other neurological properties such 

as architectural measures of cortical thickness (Glasser et al., 2016) or topographic 

organization (Felleman and Van, 1991).  

For a functional parcellation to be clinically useful, there are certain constraints that 

needs to be fulfilled: (i) Functional parcellations should have high reliability and 

reproducibility within each individual, (ii) they should be sensitive to inter-individual 

differences in brain function, and (iii) they need to preserve correspondence across 

individuals to facilitate comparison across subjects and populations. While previous work 
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has attempted to address these constraints to some extent, the field still lacks a fully 

automated, reproducible, and behaviorally cross-validated method of functional brain 

parcellation. 

Cohen et al. proposed a boundary mapping parcellation technique to define functional 

areas based on the sharp transition boundaries (Cohen et al., 2008). Their work was 

complemented by Wig. et al, using snowball sampling method to highlight the individual-

specific architectonics and connectivity patterns (Wig et al., 2014). Using the same 

parcellation method, Laumann et al. studied the reliability of a single subject parcellation 

based on 14 hours of resting-state fMRI data accumulated over more than a year 

(Laumann et al., 2015). One conceptual limitation of boundary mapping approaches is 

that exclusively rely on sharp transitions of a single property, and thus (i) are inherently 

limited by the sensitivity of the measuring technique to that property, and (ii) may miss 

the subdivisions developed based on other properties. 

Another well-established parcellation strategy is based on agglomerative hierarchical 

clustering (Rokach and Maimon, 2005). This approach builds a hierarchy of clusters in a 

bottom-up fashion in which voxels with similar time series are merged to build larger 

functional units. While this approach has proved successful in identifying reliable parcels 

that are aligned with task-induced fMRI clusters (Blumensath et al., 2013), their ability to 

capture cytoarchitectonic boundaries is not clear. Van Oort et al. employed a contrasting 

strategy by dividing the large-scale functional units into smaller sub-regions using a top-

down approach. Such top-down approach has shown perfect alignment with the 

underlying neurobiological features and proved useful for brain areas with convoluted 



 

 

 

198 

folding patterns (van Oort et al., 2018); however, its performance is determined by the 

initial functional network definition.  

 

Conceptually, the most similar previously published approach to our proposed 

parcellation is the individualized network parcellation algorithm proposed in Wang et al. 

(Wang et al., 2015). This approach uses a k-means algorithm to individualize an existing 

network-level parcellation of 18 clusters. Although k-means algorithm yields satisfactory 

results for the small-scale problems (such as 18 clusters), due to its sensitivity to 

initialization and the inherent risk of converging to local optima, it is not clear how they 

generalize to large-scale parcellation problems (with 200-500 nodes). In contrast, our 

submodular exemplar-based parcellation approach (Salehi et al., 2017a) restricts the 

selection of exemplars to the data points themselves, which in turn reduces the sensitivity 

of the results to noise and outliers. Our parcellation algorithm is a three-step pipeline 

which starts from a group-based parcellation and warps it to adapt to each individual 

data. 

 

 Theory  

3.1 Localized exemplar-based parcellation 

Our individualized parcellation algorithm is comprised of three steps. In the first step, an 

off-the-shelf group-level parcellation is applied to each individual’s data, assigning each 

voxel to a node defined by the group parcellation. In the second step, one or more 

representative voxels are identified within each group-defined node. These voxels, named 

exemplars, are identified by maximizing a monotone non-negative submodular function 
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(see Eq. 2). In the final step, each voxel in the brain is assigned to the functionally closest 

exemplar, such that the spatial contiguity of nodes is preserved. To account for the spatial 

contiguity, we had previously employed a Gaussian spatial smoothing with FWHM = 12 

mm. However, spatial smoothing with large kernels reduces the spatial resolution, 

potentially blurring out meaningful information. We recently extended this method to 

have a built-in guarantee for the spatial contiguity of nodes. Details can be found 

elsewhere (Salehi et al., 2018a), but briefly, we start from each exemplar and gradually 

expand it such that at every assignment the spatial contiguity of the nodes are preserved.  

 

3.2 exemplar-identification 

As previously explained (Salehi et al., 2018a; Salehi et al., 2017a), the exemplar 

identification problem can be view as a data summarization problem where we the goal is 

to identify 𝑘 data points to represent the entire data such that minimum information is 

lost. More formally, the problem can be written as minimizing the following loss function 

subject to the cardinality constraint	|𝑆| ≤ 𝑘: 

 𝐿(𝑆) =
1
|𝑉|bmin

/∈:
𝑑(𝑣, 𝑒)

%∈1

, (1) 

where, 𝑉 is the ground set consisting of all data points, 𝑑:	𝑉 × 𝑉 → 𝑅 is a dissimilarity 

function (here, squared Euclidean distance), and 𝑆 is the objective exemplar set. 

Intuitively, 𝐿(𝑆) measures how much information we lose if we summarize 𝑉 to the 

exemplar set 𝑆 by representing each data point with its closest exemplar. 

Minimizing (1) is generally NP-hard. The work by (Krause and Golovin, 2012) has 

shown that minimizing 𝐿(𝑆) can be transformed into maximizing a non-negative 
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submodular function 𝑓(𝑆) by introducing an appropriate auxiliary exemplar 𝑣!. More 

formally: 

 max
2⊆4

𝑓(𝑆), 

𝑠. 𝑡.		|𝑆| ≤ 𝑘, 
(2) 

where: 

 𝑓(𝑆) = 	𝐿(𝑣!) − 	𝐿(𝑆 ∪ 𝑣!) (3) 

Greedy algorithm provides an efficient 1 − 1/e ≈ 0.63 approximation to the optimal 

solution (Nemhauser et al., 1978). Any vector 𝑣! whose distance to every data point is 

greater than the pairwise distances between data points can be used as an auxiliary 

exemplar.  

 

3.3 Definition of Submodularity 

A function 𝑓: 21 → 𝑅	is submodular if for every 𝐴 ⊆ 𝐵 ⊆ 𝑉 and 𝑒 ∈ 𝑉\𝐵 it holds that 

𝑓(𝐴 ∪ 𝑒) − 𝑓(𝐴) 	≥ 𝑓(𝐵 ∪ 𝑒) − 𝑓(𝐵). That is, adding an element 𝑒 to a set 𝐴 increases 

the utility at more than (or at least equal to) adding it to 𝐴’s superset, 𝐵, suggesting a 

natural diminishing returns property. 

 

 Materials and Methods 

4.1 Participants 

Analyses were employed using resting-state fMRI data obtained from the Human 

Connectome Project (HCP) (Van Essen et al., 2013). HCP data includes two resting-state 

sessions acquired in two different days, referred to as Rest 1, and Rest 2. We limited the 
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analyses to subjects for whom data were available for all functional conditions (with left-

right (LR) and right-left (RL) phase encoding). Data from LR encoding was used in this 

work. To mitigate the substantial effects of head motion on functional parcellations, we 

further excluded subjects with excessive head motion (defined as mean frame-to-frame 

displacement > 0.1 mm and maximum frame-to-frame displacement > 0.15 mm), leaving 

514 subjects (284 females; age = 22 - 36+) for analysis. 

 

4.2 Imaging Parameters and Preprocessing 

Starting with the minimally preprocessed HCP data (Glasser et al., 2013), further 

preprocessing steps were performed using BioImage Suite  (Joshi et al., 2011) and 

included regressing 24 motion parameters, regressing the mean time courses of the white 

matter and cerebrospinal fluid as well as the global signal, removing the linear trend, and 

low-pass filtering (as previously described in (Finn et al., 2015a)). 

 

4.3 Individualized functional parcellation 

All data points were normalized into a unit norm sphere centered at the origin, and a 

point with norm greater than two was used as the auxiliary exemplar (𝑣! in Eq. 3). This 

was to ensure the distance between auxiliary exemplar 𝑣! to every data point is greater 

than the pairwise distances between the data points. For every individual in each fMRI 

session (Rest 1 and Rest 2), the individualized parcellations were computed using the 

exemplar-based parcellation algorithm. In particular, each individual data was first 

parcellated using a group-level atlas (Shen et al., 2013) consisting of 268 nodes, defined 

based on a separate population of healthy individuals (Finn et al., 2015b). Next, an 
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exemplar was identified within each group-defined node, maximizing Eq. 2 using greedy 

algorithm. Last, each voxel was assigned to the closest exemplar while ensuring spatial 

contiguity (see (Salehi et al., 2018a) for more details), resulting in two parcellation for 

each individual, one for Rest 1 and the other for Rest 2. 

 

4.4 Individualized parcellation reproducibility 

To establish the individualized parcellations are unique and reliable across sessions, we 

examined whether parcellations are more similar within an individual across sessions 

than across individuals. Parcellation similarities were quantified using rHamming = 1- 

normalized Hamming distance, which measures the percentage of voxels that are 

consistent in their node assignments. 

 

4.5 Identifying individuals based on their parcellations 

Next, we investigated weather individualized parcellations are distinct enough to identify 

the individual from a large group of subjects (n=514). To this end, we considered 

individualized parcellations computed during Rest 1 as the ‘target’ set, and the ones 

computed during Rest 2 as the ‘database’ from which the individual is to be identified. In 

an iterative process, we selected one individual’s parcellation from the target set and 

compared it against every individual parcellation in the database to find the one with 

maximum similarity, where similarity was measured by rHamming. Once an identity was 

predicted, it was assigned a score of 1, if it matched the true identity, and 0, otherwise. 

The iterative process continued until all individuals were considered as the target. The 

identification success rate was measured as the percentage of individuals whose identity 
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was correctly predicted. Next, we reversed the setting by considering Rest 1 as the 

‘database’ and Rest 2 as the ‘target’ set, and repeated the iterative pipeline. 

 

4.6 Identification power of each functional network 

To test the hypothesis that certain functional networks contribute more to individuals’ 

discriminability than others, we repeated our identification pipeline, this time restricting 

our analysis to the nodes within each functional network. Accordingly, similarity was 

defined as the percentage of voxels within the nodes of that particular network which 

remained the same across parcellations. These networks (1-12) were identified in a 

previous work (Salehi et al., 2018b) based on the same data set used here. To ensure that 

parcellations were the only factor contributing to the identification power, we fixed the 

networks to be the same across individuals and sessions. To this end, we took the 

majority vote over all individuals in Rest 1 and Rest 2 (see (Salehi et al., 2018b) for more 

details). 

 

  Experiments and Results 

5.1 Individualized parcellation reproducibility 

We computed parcellation similarity between Rest 1 and Rest 2 both within and across 

individuals, resulting in a squared matrix of size 514 × 514, where every element (𝑖, 𝑗) 

in this matrix measures the parcellation similarity between individual 𝑖 in Rest 1 and 

individual 𝑗 in Rest 2 (Figure 1a). Diagonal elements in Figure 1a indicate parcellation 

similarities within an individual across sessions (Rest 1 and Rest 2), whereas off-diagonal 

elements show the similarity across individuals. The normalized distribution of the 
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within-individual and cross-individual similarity values are depicted as histograms 

(Figure 1b), and compared using the non-parametric Kolmogorov–Smirnov test. We 

observe that parcellations are significantly more similar within an individual across 

resting-state sessions than across individuals (Figure 1b; K-S test; p<10-16), suggesting 

that individualized parcellations are reproducible across sessions, and significantly 

rearrange from one individual to another. 
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Figure 1. Individualized parcellation reproducibility. For every individual (n=514) data were 
collected during two resting-state sessions in two different days (Rest 1 and Rest 2). Parcellation 
was performed for each individual data and each session separately, and compared across the two 
sessions. a) Parcellation similarity was calculated between Rest 1 and Rest 2 sessions, both within 
an individual (diagonal elements) and across individuals (off-diagonal elements). Every element 
(𝑖, 𝑗) in this matrix represents the similarity between the parcellation of individual 𝑖 in Rest 1 and 
individual 𝑗 in Rest 2. Similarity was assessed by rHamming = 1 – normalized Hamming distance. b) 
A histogram of all pair-wise parcellation similarities between Rest 1 and Rest is depicted both for 
within-individual (cyan; diagonal elements in [a]) and cross-individual (gray; off-diagonal 
elements in [a]) cases. The within- and cross- distributions are significantly different (K-S test; 
p<10-16). 
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5.2 Identifying individuals based on their parcellations 

We employed our individual identification paradigm (Figure 2a) based on the whole-

brain parcellations (with 268 nodes). We could significantly identify individuals with 

99.03% (509/514) and 98.64% (507/514) accuracy having Rest 1 and Rest 2 as our target 

session, respectively (Figure 2b). To assess the statistical significance of the 

identification accuracy, we performed nonparametric permutation testing. In each 

iteration, we randomly permuted the individuals’ identity and repeated the identification 

pipeline and computed the success rate using the randomized identities. We repeated this 

procedure 1000 times. The highest success rate achieved was 1.17 % (6/514), yielding a 

p-value of 0. 
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Figure 2. Individual identification paradigm and accuracy. a) For identification, we used the 
parcellation schemes from one session (Rest 1 or Rest 2) as the database and the parcellation 
schemes from the other session (Rest 2 or Rest 1) as the target set. Given a query parcellation 
scheme from the target set, we computed the similarity (rHamming) between this parcellation and all 
the parcellation schemes in the database, and selected the individual with highest parcellation 
similarity (argmax) as the predicted identity (ID*). b) For each of the two sessions considered as 
the target set, we computed the identification success rate as the percentage of individuals whose 
identity matched the true individual identity. 
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5.3 Identification power of each functional network 

We next investigated the identification power for each of the twelve functional networks 

(Figure 3b). Dorsal attention network (DAN) emerged as the most discriminable network 

(identification rate = 94.55%), followed by frontoparietal network (89.11%), and 

language network (83.46%), all of which comprise higher-order association areas 

spanning the frontal, parietal and temporal lobes. Networks in primary sensory regions, 

on the other hand, displayed the least predictive power, with Visual I having the 

minimum identification power (41.05%) followed by sensorimotor network (41.25%), 

and subcortical-cerebellar network (51.36%). While these networks had the minimum 

success rate, they were still significantly higher than chance (maximum chance rate = 

1.17%, p=0, permutation testing). 

To assure that the identification power of networks is not confounded by the network 

size (i.e., the amount of data), we computed the Spearman correlation coefficient between 

the network sizes and success rates. We observe no significant correlation in either cases 

of Rest 1 (rs =0.48, p=0.12) or Rest 2 (rs=0.45, p=0.15) considered as target session. 
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Figure 3. Individual identification accuracy across networks. a) Functional network 
definitions. Using a 268-node functional atlas defined on an independent data set of healthy 
subjects, we were further grouped nodes into networks (1–12) using our previously developed 
network delineation algorithm (Salehi et al., 2018b). We fixed network definitions across 
individuals to make sure node configuration is the only contributing factor to the identification 
rate. For this reason, we took the majority vote over all individuals and sessions. Networks are 
named according to their correspondence to other existing resting-state network definitions. 
DAN: dorsal attention network, FPN: frontoparietal network, VAN: ventral attention network, 
DMN: default mode network, CON: cingulo-opercular network, Sub-Cereb: 
subcortical/cerebellar network, and SMN: sensorimotor network. b) Identification success rate 
divided by the networks, sorted from high to low. For every network, identification paradigm 
(Figure 2) was repeated using only the nodes in that network to compute the parcellation 
similarity. Bar shading (black or gray) indicates which session was used as target. 
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 Discussion 

Here we show that the individualized functional parcellations, derived from our proposed 

submodular-based parcellation algorithm, are both unique and reliable across sessions. 

We demonstrate that the node spatial topography is unique enough to act as a fingerprint, 

identifying the individual from a pool of subjects with 99% accuracy. Our findings also 

suggest that nodes with high identifying power overlap with areas in higher-order 

association cortex, potentially suggesting the cognitive relevance of such node 

reconfigurations. 

 

6.1 Implications for functional connectivity  

While traditional connectivity studies have focused on group-level templates to define 

nodes (Sporns, 2011), our findings here suggest that there is considerable amount of 

inter-individual variability and uniqueness in parcellations. Considering such variability 

can further inform efforts to understand the link between brain function and behavior. 

Previous work has shown that changes in spatial configuration of nodes can be 

interpreted as changes in connectivity (Bijsterbosch et al., 2018). As such, it is critical for 

connectivity studies to take these reconfigurations into account when interpreting the 

results. However, it is often challenging to isolate variabilities induced by meaningful 

individual-specific characteristics form noise. Given that functional atlases are the very 

beginning of the pipeline, it is critical for connectivity approaches to define functionally 

coherent nodes. Our finding that individuals can be identified based solely on the spatial 

topography of their nodes demonstrates that the observed node variabilities are not driven 

by noise, but are robust and reliable reflection of the underlying idiosyncrasies.  
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We have previously established the clinical utility of individualized parcellations 

(Salehi et al., 2017a), by showing that connectivity matrices built on individualized 

parcellations yield higher predictive power (for predicting IQ) than the ones built on 

group-level atlases. This work extends previous findings by showing that the 

individualized parcellations are reliable across sessions, and as such, can form a more 

powerful alternative to the commonly used group-based atlases. With these findings, we 

hope to inspire future connectivity approaches to consider personalized atlases in their 

analysis, which may in turn increase the efficacy of the subsequent analyses. 

 

6.2 Localizing contributors: network-based analysis 

Networks located in higher-order association areas displayed the most identifying power, 

whereas network in the primary sensory areas emerged as the least distinct (Figure 3). 

These findings are in line with previous reports from our group (Finn et al., 2015b; Salehi 

et al., 2017b) and others on the inter-individual variability in networks (Laumann et al., 

2015; Wang et al., 2015) and connectivity profiles (Mejia et al., 2016; Miranda-

Dominguez et al., 2014; Mueller et al., 2013). The emergence frontoparietal network as 

one of the most distinct systems, is in line with its role in human brain cognition. Nodes 

in frontoparietal network, are known as flexible hubs, shifting their connections based on 

the demands of the task (Cole et al., 2013). These regions have been associated with 

higher order cognitive processes (Dosenbach et al., 2008; Zanto and Gazzaley, 2013), and 

are also the most evolutionarily recent (Zilles et al., 1988). 

Of note, while identification based on each independent network was successful, 

highest accuracy was achieved when the whole brain was considered (Figure 2). This 
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finding mirrors recent characterization of cognitive processes arising from coordinated 

activity across the entire brain (Bassett et al., 2015; Finn et al., 2015b; Rosenberg et al., 

2016). The nature of such variability across individuals and their relevance to differences 

in behavior remains an important question for future investigations. 

 

 Conclusion 

Together, our findings suggest that individualized functional parcellations act as an 

identifying fingerprint, establishing that individual variability in the spatial topography of 

nodes are both substantial and reliable. Such variability is most prominent in areas 

associated with higher-order cognition, suggesting the potential cognitive relevance of 

such reconfigurations. Integrating these individualized atlases into the current 

connectivity pipelines can further inform future efforts to understand the link between 

brain function and behavior. 



Chapter 7: There is no single functional atlas even for a single 

individual: Parcellation of the human brain is state dependent 

 

 

 

Abstract 

The goal of human brain mapping has long been to delineate the functional subunits in 

the brain and elucidate the functional role of each of these brain regions. Recent work has 

focused on whole-brain parcellation of functional Magnetic Resonance Imaging (fMRI) 

data to identify these subunits and create a functional atlas. Functional connectivity 

approaches to understand the brain at the network level require such an atlas to assess 

connections between parcels and extract network properties. While no single functional 

atlas has emerged as the dominant atlas to date, there remains an underlying assumption 

that such an atlas exists. Using fMRI data from a highly sampled subject as well as two 

independent replication data sets, we demonstrate that functional parcellations based on 

fMRI connectivity data reconfigure substantially and in a meaningful manner, according 

to brain state.  
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 Introduction 

Human neuroscience research has long endeavored to assign specific functions to clearly 

demarcated brain regions. Neuroimaging has offered deep insights into functional 

specialization in the human brain, and has permitted the localization of functional 

regions. Brain mapping approaches have been focused on assigning specific roles to such 

regions and through this approach much has been learned about the functional 

organization of the brain. Recently, there has been significant interest in whole-brain 

parcellation approaches for deriving brain atlases (Eickhoff et al., 2017). The parcellation 

problem itself is of great interest, and whole-brain parcellation is particularly relevant for 

defining the human connectome, which characterizes the interactions between brain 

regions. These developments have fueled a growing interest in functional connectivity-

based analyses. There has been no consensus to date, however, on how to define the 

underlying atlas that best reflects the brain’s functional organization. 

The widely used Brodmann areas (Brodmann, 1909), defined by cytoarchitectural 

boundaries, were among the earliest attempts to subdivide the brain into functionally 

meaningful units, and there have been numerous, varied approaches to generate such 

atlases since (Craddock et al., 2012; Downing et al., 2001; McIntosh et al., 1994; 

Nieuwenhuys et al., 2015; Schubotz et al., 2010; Tzourio-Mazoyer et al., 2002). 

Neuroimaging-based parcellation approaches are attractive because they allow whole-

brain parcellations in individuals (Blumensath et al., 2013; Chong et al., 2017; Salehi et 

al., 2017; Smith et al., 2013b) or groups of subjects (Fan et al., 2016; Glasser et al., 2016; 

Gordon et al., 2014; Power et al., 2011; Shen et al., 2013; Thomas Yeo et al., 2011b; Van 

Essen, 2013) (for a review see Eickhoff et al. (Eickhoff et al., 2018)). Most recent 
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neuroimaging-based parcellation algorithms have been based entirely on functional 

connectivity data (Gordon et al., 2014; Power et al., 2011; Shen et al., 2013; Thomas Yeo 

et al., 2011b) or combinations of anatomical and functional data (Fan et al., 2016; Glasser 

et al., 2016). In addition, meta-analytic databases such as BrainMap (Fox and Lancaster, 

2002) and NeuroSynth (Yarkoni et al., 2011) have attempted to collate information from 

thousands of studies to provide behavioral context on any region of the brain, and 

clustering methods have been developed to translate these findings into homogeneous 

regions (Eickhoff et al., 2011). Yet all of these commonly adopted parcellations, whether 

at the individual or group level, define a single functional atlas with the underlying 

assumption that parcels are homogenous in function and invariant in size, shape or 

position regardless of brain state.  

In this work, we provide evidence that there is not a single functional parcellation atlas 

but rather that the flexible brain reconfigures these functional parcels depending upon 

what it is doing. While there are many timescales on which brain states can be measured 

and many ways in which they can be defined (see Discussion), here we use tasks to elicit 

discrete, distinct brain states, and demonstrate that parcel boundaries change across task-

induced states, yet are reliably reproducible within a state. Further, we show that the 

particular configuration of the parcels provides meaningful information on brain state: 

that is, a measure as coarse as parcel size for a given atlas can significantly predict the 

task condition under which the data were acquired, as well as the within-condition task 

performance. Using a single, highly sampled subject, where we know there are no 

anatomic differences across conditions or sessions, and wherein one would expect the 

parcels to be consistent from session to session, we demonstrate that the parcels are 



 

 

 

216 

indeed consistent for a given condition, but reproducibly reconfigure across conditions, 

even when starting with the same initial atlas each time. These results hold across two 

additional independent data sets, both within and across subjects, and at various 

parcellation spatial resolutions, suggesting that they are the result, not simply of 

individual idiosyncrasies in functional brain organization or of systematically varying 

noise in boundary estimates, but rather of robust, generalizable, state-dependent 

reorganization of functional areas. This suggests that a single functional parcellation of 

the human brain is neither attainable nor desirable, it emphasizes the importance of 

considering brain state when drawing functional boundaries on the brain, and offers 

functional parcellations as a tool to study state-dependent changes in functional 

organization of the human brain. These findings provide another dimension with which to 

understand the organization of the flexible brain under changing brain state or cognitive 

conditions. 

 

 Materials and Methods 

Three independent data sets are used in this work. In the first, 30 sessions of fMRI data 

were obtained from a single subject; each session was approximately 60 minutes long and 

included 6 task conditions (n-back (Rosenberg et al., 2015), gradual-onset continuous 

performance task [gradCPT] (Esterman et al., 2012; Rosenberg et al., 2013; Rosenberg et 

al., 2016), stop-signal [SST] (Verbruggen et al., 2008), card guessing (Delgado et al., 

2000), Reading the Mind in the Eyes (Baron‐Cohen et al., 1997), and movie watching) 

and 2 rest conditions. Data were acquired from a single subject to eliminate the potential 

confound of inter-individual variations in anatomy, which would contribute to the 
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variance in parcel boundaries (Bijsterbosch et al., 2018).  The high number of fMRI 

sessions acquired in a single subject allows us to demonstrate consistent within-condition 

parcellations across sessions, while also demonstrating significantly different cross-

condition parcellations, both within and across sessions. Since a single subject was used, 

the null hypothesis would be consistent parcellations across all sessions and conditions.  

A second, independent data set was used from Midnight Scan Club (MSC) (Gordon et 

al., 2017b) to replicate these findings and demonstrate their generalizability. The MSC 

data are particularly well suited for this analysis, as they include task-based and resting-

state fMRI data from 10 individuals, each of whom was scanned 10 times.  

Finally, rather than measuring consistency within a subject across sessions, we used 

the Human Connectome Project (HCP) (Van Essen et al., 2013) data (n=514) to 

demonstrate that even when collapsing across subjects (rather than sessions), we observe 

that different conditions lead to reproducibly different functional parcellations. These 

three data sets are described in detail below. 

 

2.1 Yale Data 

2.1.1 Participant and processing 

The primary subject R.T.C. is a healthy left-handed male, aged 56 years old at the onset 

of the study. The subject provided written informed consent in accordance with a 

protocol approved by the Human Research Protection Program of Yale University. 

The subject was scanned at Yale University 33 times (that is, 33 sessions) over ten 

months. Scans were typically performed on Wednesdays at 8:30 am and Fridays at 2:00 

pm. Functional MRI data were acquired on 2 identically configured Siemens 3T Prisma 
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scanners equipped with a 64-channel head coil at the Yale Magnetic Resonance Research 

Center. Three sessions were excluded from analysis: the first two sessions were excluded 

because of the considerable adjustment in task design after session 2, and the ninth 

session was excluded due to interruptions in task presentation due to interruptions in task 

presentation. 

The first session was used to acquire structural MRI data. High-resolution T1-

weighted 3D anatomical scans were performed using a magnetization prepared rapid 

gradient echo (MPRAGE) sequence with the following parameters: 208 contiguous slices 

acquired in the sagittal plane, repetition time (TR) = 2400 ms, echo time (TE) = 1.22 ms, 

flip angle = 8°, slice thickness = 1 mm, in-plane resolution = 1 mm × 1 mm, matrix size = 

256 × 256. A T1-weighted 2D anatomical scan was acquired using a fast low angle shot 

(FLASH) sequence with the following parameters: 75 contiguous slices acquired in the 

axial-oblique plane parallel to AC-PC line, TR = 440 ms, TE = 2.61 ms, flip angle = 70°, 

slice thickness = 2 mm, in-plane resolution = 0.9 mm × 0.9 mm, matrix size = 256 × 256.  

Functional scans were performed using a multiband gradient echo-planar imaging 

(EPI) pulse sequence with the following parameters: 75 contiguous slices acquired in the 

axial-oblique plane parallel to AC-PC line, TR = 1000 ms, TE = 30 ms, flip angle = 55°, 

slice thickness = 2 mm, multiband acceleration factor = 5, in-plane resolution = 2 mm × 2 

mm, matrix size = 110 × 110. 

Data were analyzed using BioImage Suite (Joshi et al., 2011) and custom scripts in 

MATLAB (MathWorks). Motion correction was performed using SPM 

(https://www.fil.ion.ucl.ac.uk/spm/). White matter and CSF masks were defined in MNI 

space and warped to the single-subject space using a series of linear and non-linear 
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transformations (see Scheinost et al. (Scheinost et al., 2015)). The following noise 

covariates were regressed from the data: linear, quadratic, and cubic drift, a 24-parameter 

model of motion (Satterthwaite et al., 2013), mean cerebrospinal fluid signal, mean white 

matter signal, and mean global signal. Finally, data were temporally smoothed with a 

Gaussian filter (𝜎 = 1.55). 

 

2.1.2 Dimensional task battery design 

Functional scans were 6 minutes 49 seconds each, including initial shim and 8s 

discarded acquisitions before the start of each task. Tasks varied slightly in length (see 

below), but were all approximately 6 minutes in duration. A fixation cross was displayed 

after the end of each task and lasted until the beginning of the next task. Each task, with 

the exception of movie watching, was preceded by instructions and practice, after which 

the subject had the opportunity to ask questions before the scan began. All responses 

were recorded using a 2×2 button box. 

Each session consisted of two resting-state runs and six task runs. The first and last 

functional runs (runs 1 and 8) were resting-state runs, during which the participant was 

instructed to stay still with his eyes open. Runs 2 – 7 were task runs, with the order 

counterbalanced across sessions. 

 

2.1.2.1 N-Back Task 

The n-back task was adapted from that used in Rosenberg et al. (Rosenberg et al., 2015). 

In this task, the participant was presented with a sequence of images and was instructed 

to respond via button press if the image was different than the image presented two 
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before, and to withhold response if it was the same. Images were presented for 1 second, 

followed by a 1-second inter-trial interval (ITI; fixation cross). The target (i.e., matching 

image) probability was 10%. There were two blocks, each with 90 trials. One block used 

images of emotional faces and the other block used images of scenes (Cohen et al., 2016; 

Conley et al., 2018). Block and stimulus order were randomized for each session. Task 

performance was assessed by sensitivity (d'), defined as hit rate relative to false alarm rate 

(Rosenberg et al., 2016). 

 

2.1.2.2 Gradual-onset Continuous Performance Task (gradCPT) 

The gradCPT task was adapted from that described in Esterman et al. (Esterman et al., 

2012) and Rosenberg et al. (Rosenberg et al., 2013; Rosenberg et al., 2016). In this task, 

the participant viewed a sequence of 450 scenes (city or mountain) that gradually 

transitioned via linear pixel-by-pixel interpolation from one to the next over 800ms. The 

participant was instructed to respond via button press to cities and to withhold response to 

mountains. Stimulus order was randomized, and 10% of images were mountains. Task 

performance was assessed by sensitivity (d'). 

 

2.1.2.3 Stop-Signal Task (SST) 

The stop-signal task was adapted from that implemented in Verbruggen et al. 

(Verbruggen et al., 2008). In this task, the participant was required to determine via 

button press whether a presented arrow was pointing left (right index finger) or right 

(right middle finger). On 25% of trials, the arrow turned blue after some delay, indicating 

that the participant should withhold response. This stop-signal delay (SSD) was initially 
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set to 250ms, and was continuously adjusted via the staircase tracking procedure (50ms 

increase after correct inhibition trials; 50ms decrease after each failure to inhibit). The 

arrow was presented for 1.5 seconds, followed by 0.5 seconds of fixation; there were 176 

trials in total, with stimulus order randomized within block. Task performance was 

assessed by missing probability, defined as the percentage of missed responses on no-

signal trials (Verbruggen et al., 2008). 

 

2.1.2.4 Card Guessing Task 

The card guessing task was adapted from that originally developed by Delgado et al. 

(Delgado et al., 2000) and subsequently extended (Barch et al., 2013; Speer et al., 2014). 

In this task, the participant was presented with a card and asked to guess if the number on 

the back was lower than 5, or greater than 5 but less than 10. The question mark card was 

displayed for 1.5 seconds, or until the participant responded (right index finger for 

“lower,” right middle finger for “higher”). The card then “flipped over” to reveal the 

number. The number was displayed for 0.5 seconds, followed by an arrow for 0.5 

seconds to indicate accuracy (green and up for correct, red and down for incorrect), 

which was in turn followed by a 1-second inter-trial interval (fixation cross). There were 

10 blocks, each with 10 trials, and guess accuracy was deterministic, such that in half of 

the blocks (“high win”), the participant was correct 70% of the time, while in the other 

half of the blocks (“high loss”) he was correct 30% of the time; block (high win/loss) and 

trial (correct/incorrect) orders were randomized. Task performance was assessed by RT 

variability, defined as standard deviation of reaction time (May et al., 2004). 
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2.1.2.5 Reading the Mind in the Eyes Task (“Eyes Task”) 

The Eyes Task was adapted from that originally described in Baron-Cohen et al. (Baron‐

Cohen et al., 1997). In this task, the participant viewed a series of photographs of an 

individual’s eyes with four “mental state terms” (Baron‐Cohen et al., 1997), one in each 

corner of the image, and was instructed to select via button press (with each button 

corresponding to one corner, and thus one term) the term that best described what the 

individual was thinking or feeling. There were 36 images in total. Each was presented 

once, in random order, for 9.25 seconds or until the participant responded; the remainder 

of each 10-second trial consisted of a fixation cross. Task performance was assessed by 

RT variability, defined as standard deviation of reaction time for correct trials. 

 

2.1.2.6 Movies Task 

In this task, three movie clips were presented in continuous series; each was 

approximately 2 minutes long. The first clip was a trailer for “Inside Out,” the second 

clip was the wedding scene from “Princess Bride,” and the third clip was a trailer for 

“Up;” order was fixed across sessions. The participant was instructed to relax and enjoy 

the movies; no responses were required. No task performance was recorded.  

 

2.2 Midnight Scan Club (MSC) Data 

2.2.1 Participants and processing 

The MSC data set (Gordon et al., 2017a) includes data from 10 healthy individuals (5 

females; age = 24 – 34); each underwent 1.5 hours of functional MRI scanning on 10 
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consecutive days, beginning at midnight. For details of the data acquisition parameters 

and sample demographics see Gordon et al (Gordon et al., 2017a). Two individuals were 

excluded from the analysis: MSC08 was excluded because of excessive head motion and 

self-reported sleep (Gordon et al., 2017a); MSC10 was excluded for insufficient data 

(missing one session of incidental memory task). 

All data were preprocessed using BioImage Suite (Joshi et al., 2011). Data were 

transformed to MNI space to facilitate analysis across multiple subjects. Preprocessing 

steps included regressing 24 motion parameters, regressing the mean time courses of the 

white matter and cerebrospinal fluid as well as the global signal, removing the linear 

trend, and low pass filtering. 

 

2.2.2 Task battery design 

Each scanning session started with a 30-min resting-state fMRI scan, followed by three 

separate task-based fMRI scans: motor task (2 runs per session, 7.8 min combined), 

incidental memory task (3 runs per session, 13.1 min combined), and semantic-coherence 

task (2 runs per session, 14.2 min combined).  

 

2.2.2.1 Motor Task 

The motor task was adapted from that used in the Human Connectome Project (HCP) 

(Barch et al., 2013). In this task, participants were cued to perform one of the following 

movements: closing/relaxing their hands, flexing/relaxing their toes, or wiggling their 

tongue. Each block started with a 2.2 s cue indicating which movement to perform, 

followed by a central caret (flickering every 1.1s) to signal the movement. Each run 
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consisted of 2 blocks of each movement type and 3 blocks of resting-fixation (15.4 s 

total).  

 

2.2.2.2 Incidental Memory Task 

The incidental memory task consisted of three different types of stimuli (scenes, faces, 

and words), each presented in a separate run. For scene runs, participants were asked to 

decide if the presented scene was indoors or outdoors. For face runs, participant made 

male/female judgments. For word runs, participants made abstract/concrete judgments. 

Each run consisted of 24 stimuli, each repeating 3 times. Stimuli were presented for 1.7 s 

with a jittered 0.5-4.9 s inter-stimulus interval. All stimuli were taken from publicly 

available sources (see Gordon et al. (Gordon et al., 2017a) for details). 

 

2.2.2.3 Semantic-Coherence Task 

The semantic-coherence task had a mixed block/event-related design, consisting of two 

different conditions (“semantic” and “coherence”). In the “coherence” task, participants 

viewed a concentric dot pattern (Glass, 1969) with 0% or 50% coherence, and made 

binary decisions whether the pattern was concentric or random. In the semantic task, 

participants viewed a word and indicated whether the word is a noun or verb. Each run 

consisted of two blocks of each task, separated by 44 s of rest. Each block started with a 

2.2 s cue indicating which task was to be performed. Blocks consisted of 30 trials. 

Stimuli were presented for 0.5 s with a variable 1.7-8.3 s ISI. Each block finished with a 

2.2 s cue indicating the end of the task block. 
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2.3 Human Connectome Project (HCP) Data 

2.3.1 Participants and processing 

The HCP data set  includes data from 897 healthy individuals (S900) scanned during nine 

functional conditions (seven tasks and two rest). For details of the data acquisition 

parameters see Uǧurbil et al. (Uğurbil et al., 2013) and Smith et al. (Smith et al., 2013a). 

Analyses were restricted to subjects for whom data were available for all nine functional 

conditions (with left-right (LR) and right-left (RL) phase encoding). To mitigate the 

substantial effects of head motion on functional parcellations, we further excluded 

subjects with excessive head motion (defined as mean frame-to-frame displacement > 

0.1 mm and maximum frame-to-frame displacement > 0.15 mm), leaving 514 subjects 

(284 females; age = 22 – 36+) for analysis. 

The HCP minimal preprocessing pipeline was employed (Glasser et al., 2013), which 

includes artifact removal, motion correction and registration to MNI space. Further 

preprocessing steps were performed using BioImage Suite (Joshi et al., 2011) and 

included standard preprocessing procedures (Finn et al., 2015) including regressing 24 

motion parameters, regressing the mean time courses of the white matter and 

cerebrospinal fluid as well as the global signal, removing the linear trend, and low pass 

filtering. 

 

2.3.2 Task battery design 

Functional MRI scans were acquired during two different days: Day 1 included two runs 

(LR and RL) of the working memory (WM) task (5:01 min per run), incentive processing 

(gambling) task (3:12 min), motor task (3:34 min), and rest (14:33 min); day 2 included 
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two runs of the language processing task (3:57 min), social cognition (theory of mind) 

task (3:27 min), relational processing task (2:56 min), emotion processing task (2:16 

min), and rest (14:33 min).  

The details of task design have been previously described (Barch et al., 2013; Van 

Essen et al., 2013). We provide a brief description of each task and an overview of the 

relevant aspects below. 

 

2.3.2.1 Working Memory Task 

In this task, participants performed a visual n-back task, with blocked 0-back and 2-back 

conditions using four stimulus categories (faces, places, tools, body parts). Each run 

consisted of 8 task blocks (10 trials each), with each stimulus category used twice, and 4 

fixation blocks. Each block started with a 2.5 s cue indicating the task type (0-back 

versus 2-back) and the target (for 0-back).  

 

2.3.2.2 Gambling Task 

In this task, participants were presented with a mystery card and asked to guess if the 

number on the back was lower than 5, or greater than 5 but less than 10. On reward trials, 

participants were shown the number on the card, a green up arrow, and “$1”; on loss 

trials, participants were shown the number on the card, a red down arrow, and “-$0.50”; 

on neutral trials, participants were shown the number 5 and a gray, double-headed arrow. 

Each run consisted of 4 task blocks (8 trials each) and 4 fixation blocks. In half of the 

blocks (“mostly reward”), subjects were correct in 6 out of 8 trials (the remaining 2 trials 
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were either neutral or loss), while in the other half of the blocks (“mostly loss”) they were 

incorrect in 6 out of 8 trials (the remaining 2 trials were either neutral or reward). 

 

2.3.2.3 Motor Task 

Participants were presented with visual cues that asked them to tap their left or right 

fingers, squeeze their left or right toes, or move their tongue. Each block started with a 3 

s cue indicating which movement to perform. Each run consisted of 2 blocks of tongue 

movements, 4 blocks of hand movements (2 left and 2 right), 4 blocks of foot movements 

(2 left and 2 right), and 3 blocks of resting-fixation. 

 

2.3.2.3 Language Task 

In this task, participants were aurally presented with 4 blocks of a story task and 4 blocks 

of a math task. In the story task, they heard brief fables (5-9 sentences) and completed 

two-alternative forced-choice questions about the topic of the story. In the math task, they 

completed addition and subtraction problems in a two-alternative forced-choice setting. 

 

2.3.2.4 Social Task 

In this task, participants were presented with 20-s video clips of objects (squares, circles, 

triangles) either interacting (theory-of-mind) or moving randomly. Participants were 

asked to choose between three potential responses (“mental interaction”, “no mental 

interaction”, and “not sure”). Each run consisted of 5 video blocks (2 mental and 3 

random in one run, 3 mental and 2 random in the other run) and 5 fixation blocks. 
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2.3.2.5 Relational Task 

The relational task consisted of two different conditions (“relational” and “matching”). In 

the relational condition, participants were presented with two pairs of objects with one 

pair at the top and the other pair at the bottom of the screen. They were asked to decide 

whether the bottom pair of objects differed along the same dimension (i.e., shape or 

texture) as the top pair. In the control matching condition, they were presented with two 

objects at the top, one object at the bottom, and a word (“shape” or “texture”) in the 

middle of the screen. They were asked to determine whether the bottom object matched 

either of the top two objects on the dimension specified by the word. Each run consisted 

of 3 relational blocks (4 trials each), 3 matching blocks (5 trials each) and 3 fixation 

blocks. 

 

2.3.2.6 Emotion Task 

In this task participants were presented with blocks of “face” and “shape” tasks, and 

were asked to determine which of the two faces (or shapes) presented at the bottom of the 

screen matched the face (or shape) at the top of the screen. Faces had either angry or 

fearful expressions. Each block started with a 3 s cue indicating which task to perform. 

Each run included 3 face blocks (6 trials each) and 3 shape blocks (6 trials each), with 8 s 

fixation at the end of each run. 

 

2.4 Individualized and state-specific parcellation algorithm 
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Here, we extended our previously developed individualized parcellation algorithm 

(Salehi et al., 2017) to account for the spatial contiguity of the parcels at the individual 

level. The presented algorithm is a priority-based submodular method that defines 

functional parcels in a streaming fashion, for every individual in every functional state. A 

key factor in this algorithm is that each parcellation begins with an atlas obtained from a 

separate group of subjects and finds an exemplar time-course for each parcel and then 

grows the parcels (see Figure 1a for a visual illustration). This exemplar-based approach 

has many advantages but the most important advantage for this work is that 

correspondence of parcels from different parcellations is maintained, making for 

straightforward comparisons of the resulting atlases. 

Our algorithm runs in three steps: 

i. Registration of the initial group-level parcellation. In the first step, an off-the-

shelf group-level parcellation is applied to each individual’s data, assigning each voxel 

to a parcel defined by the group parcellation. At this step, all individuals in every state 

have the same parcel definitions.  

ii. Exemplar identification. In the second step, for every group-defined parcel in 

an individual brain, an exemplar is identified by maximizing a monotone nonnegative 

submodular function (see Eq. 2).  

iii. Spatially-constrained voxel-to-parcel assignment. Finally, the third step 

assigns every voxel in each individual brain to the functionally closest exemplar while 

ensuring the spatial contiguity of the resulting parcel. 

A visual illustration of the parcellation algorithm is provided in Figure 1a.  
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Figure 1. Individualized state-specific parcellation pipeline and evaluation. a) Three-step 
parcellation pipeline: Step 1: Starting from data in common space, a group-level functional atlas 
is first applied to the individual subject. Step 2: For every group-defined parcel in the individual 
brain, an exemplar is identified by maximizing a monotone nonnegative submodular function; 
here, three exemplars are shown in red, green, and blue. Step 3: Every voxel in the individual 
brain is assigned to the functionally closest exemplar while taking the spatial contiguity of the 
parcel into account. The spatial contiguity is assured by utilizing priority queues. Every exemplar 
i is assigned a priority queue (denoted as qi), here depicted as red, green, and blue queues which 
correspond to red, green, and blue exemplars, respectively. Initially, all the queues are empty. In 
the first round, spatial neighbors of exemplar i are pushed into qi. The voxels in each queue are 
sorted according to their functional distance to the corresponding exemplar such that the voxel 
with minimum functional distance (maximum similarity) is in front. Next, the front voxel in each 
qi is considered as a potential candidate for being assigned the label i. Among all these 
candidates, the one with minimum distance to its corresponding exemplar is selected and assigned 
the exemplar’s label; here the candidate voxel from the ‘red’ queue is selected and labeled ‘red’. 
Next, this voxel is popped out of the queue, and all of its spatial neighbors are pushed into the 
same queue. The algorithm continues until all the voxels are assigned a label. Note that at every 
step of the algorithm the labeled voxel is ensured to be spatially connected to its exemplar (either 
directly or through other previously labeled voxels). b) Quantitative results for assessing the 
quality of parcellation. Homogeneity (top) and DB index (bottom) comparison between the 
individualized, state-specific parcellations and the initial group-level parcellation, represented as 
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box plots over sessions in Yale data, with the central mark indicating the median, and the bottom 
and top edges of the box indicating the 25th and 75th percentiles, respectively. The whiskers 
extend to the most extreme data points not considered outliers, and the outliers are plotted 
individually. *** p <2.2e-16, two-tailed Mann-Whitney test. 
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2.4.1 Exemplar identification 

The exemplar identification algorithm can be viewed as a data summarization step, where 

the goal is to summarize a massive amount of data by fewer representative points or 

exemplars. A classic way of defining such exemplars is by finding the set 𝑆 that 

minimizes the following loss function, subject to the constraint |𝑆| = 	𝑘 (known as k-

medoid problem). 

 𝐿(𝑆) =
1
|𝑉|bmin

/∈:
𝑑(𝑣, 𝑒)

%∈1

. (1) 

In this equation, 𝑉 is the ground set consisting of all data points, 𝑑:	𝑉 × 𝑉 → 𝑅 is a 

dissimilarity function defined on every pair of data points, and 𝑆 is the objective 

exemplar set. Intuitively, 𝐿(𝑆) measures how much information we lose if we summarize 

the entire ground set to the exemplar set by representing each data point with its closest 

exemplar.  

Minimizing this loss function (1) is NP-hard, as it requires exponentially many 

inquiries. Using an appropriate auxiliary exemplar 𝑣!, we transform the minimization of 

(1) into the maximization of a non-negative monotone submodular function (Gomes and 

Krause, 2010), for which general greedy algorithms provide an efficient 1 − 1/e ≈ 0.63 

approximation to the optimal solution (Nemhauser et al., 1978):  

 max
2⊆4

𝑓(𝑆), 

𝑠. 𝑡.		|𝑆| ≤ 𝑘, 
(2) 

where: 

 𝑓(𝑆) = 	𝐿(𝑣!) − 	𝐿(𝑆 ∪ 𝑣!). (3) 



 

 

 

233 

In practice, the greedy algorithm provides a considerably closer approximation to the 

optimal solution (see Salehi et al. (Salehi et al., 2018)). For the choice of auxiliary 

exemplar, any vector 𝑣! whose distance to every data point is greater than the pairwise 

distances between data points can be used.  

Definition 1 (Submodularity). A function 𝑓: 21 → 𝑅	is submodular if for every 𝐴 ⊆

𝐵 ⊆ 𝑉 and 𝑒 ∈ 𝑉\𝐵 it holds that 𝑓(𝐴 ∪ 𝑒) − 𝑓(𝐴) 	≥ 𝑓(𝐵 ∪ 𝑒) − 𝑓(𝐵). That is, adding 

an element 𝑒 to a set 𝐴 increases the utility at more than (or at least equal to) adding it to 

𝐴’s superset, 𝐵, suggesting natural diminishing returns. 

 

2.4.2 Spatially-constrained voxel-to-parcel assignment 

After identification of all exemplars (one per parcel), every voxel in the individual brain 

is assigned to the functionally closest exemplar while taking the spatial contiguity of the 

parcel into account. The spatial contiguity is assured by utilizing priority queues. Every 

exemplar i is assigned a priority queue (denoted as qi). Initially, all the queues are empty. 

In the first round, spatial neighbors of exemplar i are pushed into qi. The voxels in each 

queue are sorted according to their functional distance to the corresponding exemplar 

such that the voxel with minimum functional distance (maximum similarity) is in front. 

Next, the front voxel in each qi is considered as a potential candidate for being assigned 

the label i. Among all these candidates, the one with minimum distance to its 

corresponding exemplar is selected and assigned the exemplar’s label. Next, this voxel is 

popped out of the queue, and all of its spatial neighbors are pushed into the same queue. 

The algorithm continues until all the voxels are assigned a label. Note that at every step 
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of the algorithm the labeled voxel is ensured to be spatially connected to its exemplar 

(either directly or through other previously labeled voxels).  

 

2.5 Parcellation evaluation 

The quality of the proposed parcellation approach was assessed and compared with the 

initial group-level parcellation, using two internal clustering validation methods: 

Homogeneity (Figure 1b, top panel) and Davies-Bouldin index (DB) (Davies and 

Bouldin, 1979) (Figure 1b, bottom panel). Homogeneity was assessed by calculating the 

average cross-correlations within each node, and averaging over all the nodes in the 

parcellated brain. DB index was used to assess the clustering ability in maximizing the 

intranode compactness and the inter-node separation. Higher homogeneity and lower DB 

index values indicate higher clustering quality. 

 

2.6 Implementation details 

Here we set 𝑘 = 1, as we attempt to identify one exemplar per parcel (see Salehi et al. 

(Salehi et al., 2017) for details of interpretation and alternative approaches). For the 

choice of dissimilarity measure, we used squared Euclidean distance, after normalizing 

all the voxel-level time courses to a unit norm sphere centered at the origin. A point with 

the norm greater than 2 was used as the auxiliary exemplar. The parcellation algorithm 

was applied to each fMRI run (each individual in each state) independently, and thus was 

efficiently employed through parallelization. For HCP data, we restricted our analysis to 

left-right (LR) phase encoding. 
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2.7 Initial group-level parcellations 

As the initial group-level parcellation, we primarily used a 268-parcel atlas, previously 

defined in our lab using a spectral clustering algorithm on resting-state data of a healthy 

population (Finn et al., 2015; Shen et al., 2013). We replicated the results with more fine-

grained atlases including 368, 1041, and 5102 parcels. The 368-parcel atlas was defined 

by integrating the parcellation of cortex from Shen et al. (Shen et al., 2013), subcortex 

from the anatomical Yale Brodmann Atlas (Lacadie et al., 2008), and cerebellum from 

Yeo et al. (Thomas Yeo et al., 2011a). Similarly, the 1041-parcel parcellation was 

defined by integrating the subcortical and cerebellum portion of the 368-parcel 

parcellation with the 1000-parcel cortex parcellation from Yeo et al. (Thomas Yeo et al., 

2011a). To define the 5102-parcel atlas, we started from the 1041-parcel parcellation and 

randomly divided all the parcels until the number of voxels per parcel reached 

approximately 25. 

 

2.8 Statistical voting-based ensemble analysis 

To estimate the similarity of parcellations within and across states, we employed a 

statistical voting-based ensemble analysis. The reason for this analysis is two-fold: First, 

to help rule out noise and session effects as potential confounds; and second, to aid with 

the statistical comparison across states by generating a large distribution of state-specific 

parcellations. For each condition, we divided all sessions (for Yale and MSC data) or 

individuals (for HCP data) into two equal-size groups: group 1 and group 2. We took the 

relative majority vote over the parcellations of each group by assigning each voxel to the 

parcel for which the maximum number of sessions voted. This resulted in two 



 

 

 

236 

parcellations for each functional state, one for each group. Next, we assessed the 

similarity between every pair of the non-overlapping parcellations both within and across 

states. For instance, if there are 𝑚 functional states, this analysis generates an 𝑚 ×𝑚 

matrix, where each element (𝑖, 𝑗) represents the similarity between the parcellation of 

group 1 for state 𝑖 and the parcellation of group 2 for state 𝑗. Thus, the diagonal elements 

represent the within-state similarities while the off-diagonal elements represent the cross-

state similarities. We repeated the entire analysis 1000 times, generating an ensemble of 

𝑚 ×𝑚 similarity matrices. The normalized distribution of the within-state and cross-state 

similarity values were depicted as histograms, and compared using the non-parametric 

Kolmogorov–Smirnov test (Figures 2d,e, 4d,e, and 5d,e). The averages of these similarity 

matrices were also displayed (Figures 2a,b, 4a,b, and 5a,b). 

 

2.9 Similarity measures between parcellations 

We compared parcellations at two different scales: at the fine scale, we studied the ratio 

of voxels that change their parcel assignment across different parcellations. The fine-

scale similarity was calculated using 1 – normalized Hamming distance (Figures 2a, 4a, 

5a). At the coarse scale, we studied the changes in the parcel sizes across parcellations. 

The coarse-scale similarity was computed using Spearman correlation between parcel-

size vectors (Figures 2b, 4b, 5b). 

 

2.10 Functional state decoding using parcel size as feature 

We established a cross-validated predictive model that predicts the functional state of 

each unseen sample solely based on the size of parcels in that parcellation. Using a k-fold 
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cross-validated approach, we trained and tested a gradient boosting classifier (GBM; with 

300 estimators and learning rate = 0.1) using parcel sizes as features and the functional 

state as output. We randomly divided the entire data into k folds (k=n for the Yale and 

MSC data sets, where n is the total number of runs, and k=10 for the HCP data set). At 

each step, the model was trained on k-1 folds and tested to predict the state of the left-out 

fold. The predictive power of the model was estimated using precision (also known as 

positive predictive value) and recall (also known as sensitivity), calculated separately for 

each state. Both precision and recall measures range between 0 and 1, with higher values 

indicating higher predictive power. Precision calculates what fraction of the retrieved 

instances were actually relevant, while recall expresses what fraction of relevant 

instances were retrieved. In the case of 10-fold cross-validation (i.e., for the HCP data 

set), we repeated the predictive analysis 100 times to account for the randomness of the 

folds, and reported the precision and recall measures as the mean and standard deviation 

across all iterations. 

To evaluate the significance of the results, we employed non-parametric permutation 

testing: we randomly permuted the output vector (here the functional states) 1000 times, 

and each time ran the permuted values through the same predictive pipeline and 

calculated the precision and recall measures of the permuted states. 

 

2.11 Task performance prediction using parcel size as feature 

To establish the relevance of parcellation boundary changes to within-task variation in 

brain state, we developed a cross-validated predictive pipeline that predicts task 

performance during each Yale data session from the parcel sizes in the parcellation for 
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that session. Using a leave-one-out cross-validated approach, we trained and tested a 

ridge regression model (with regularization parameter = 1), using parcel sizes as features 

and the performance scores as output. For each task, a model was trained on n-1 sessions 

(of that task) and used to predict performance for the left-out session. Analyses were 

performed for each task independently. To measure performance, we used d’ for n-back 

and gradCPT tasks, RT variability for eyes and card-guessing tasks, and missing 

probability for SST. The predictive power was estimated using r-values, defined as the 

square root of the percentage of the explained variance. To estimate the significance of 

the results, we employed non-parametric permutation testing, where we randomly 

permuted the behavioral scores 1000 times, and each time ran the permuted scores 

through the predictive pipeline and calculated the r-value. 

 

2.12 Voxel uncertainty analysis 

Next, we demonstrate that the state-evoked parcel reconfigurations are not driven by 

voxels with low certainty in their parcel assignment. To this end, we built upon our 

voting-based ensemble analysis and quantified voxel uncertainty as the proportion of 

times across 1000 iterations that a voxel was assigned to different parcels between the 

two groups. 

 

2.13 Effects of parcellation algorithm on the state-evoked parcel reconfigurations 

One of the main advantages of the proposed parcellation algorithm is that correspondence 

of parcels from different parcellations is maintained, making for straightforward 

comparisons of the resulting atlases. Most other parcellation approaches could yield 



 

 

 

239 

completely different atlases, and in that case, it can be difficult to match parcels for 

quantitative comparison. However, to ensure that the observed state-evoked 

reconfigurations did not depend on the choice of parcellation, we employed two 

additional experiments. First, we repeated our analysis using a slight modification of our 

exemplar-based algorithm, where instead of employing a data-driven exemplar selection 

we manually fixed the exemplar to be a random voxel in the parcel, with a particular 

exemplar for a given parcel fixed across all sessions and conditions. This means the 

initial reference voxel was identical for a given parcel across all sessions and conditions. 

In this case, only the time-course data could shift the parcellation since all parcellations 

started from the same exemplar voxels across conditions and sessions. Results remained 

largely unchanged (Figure S4). Second, we replicated our results using Wang et al.’s 

individualized parcellation algorithm, which is based on an iterative k-means clustering 

approach (Wang et al., 2015). Wang’s method has an averaging step for which we used a 

standard uniformly weighted averaging. For results, see Figure S5. 

 

2.14 Effects of task activation on the state-evoked parcel reconfigurations 

To address the question of whether the parcellation reconfigurations were driven by task 

activation, we performed two experiments. First, we tested whether the mean task 

activation (calculated per parcel) correlates with differences in parcel size relative to rest 

(Figure S6). Next, we eliminated parcels with significant task activation for any of the 

tasks and repeated the entire analysis (Figure S7). Significance was defined as |z|>1.96, 

associated with 95% confidence interval or p<0.05. These two experiments were 

performed on both Yale and HCP data sets. For Yale data, because all the tasks were 
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continuous performance tasks, we approximated the task activations per parcel by 

computing the difference between the average temporal signal during task and rest. For 

HCP data, we generated task effect size maps using all available individuals’ volume-

based, FEAT-analyzed, first-level GLM output (COPE files) from the 1200 Subjects 

Release (S1200) for a given task to generate, using FSL FEAT's FLAME (FMRIB's 

Local Analysis of Mixed Effects (Smith et al., 2004)), cross-subject, voxel-wise Cohen's 

d effect-size contrast maps from t-statistic maps. We used the following contrasts for 

each task: REWARD-PUNISH (Gambling, cope6), 2BK-0BK (WM, cope11), FACES-

SHAPES (Emotion, cope3), STORY-MATH (Language, cope4), AVG (Motor, cope7), 

REL-MATCH (Relational, cope4), and TOM-RANDOM (Social, cope6). We then 

applied the initial 268-parcel group-level parcellation (Shen et al., 2013) to these voxel-

level maps to calculate a mean task effect size per parcel for each of the tasks. 

 

2.15 Effects of head motion on the state-evoked parcel reconfigurations 

To rule out the possibility that state-evoked reconfigurations were simply driven by 

characteristic head motion patterns specific to each functional condition, we tested 

whether there is significant difference in head motion between different functional 

conditions in Yale data.  We performed pairwise Wilcoxon signed-rank test (which is 

a non-parametric statistical hypothesis test to compare two dependent samples) on the 

mean frame-to-frame displacement, and corrected for multiple comparison using 

Bonferroni correction (Figure S8). 

 

 Results 
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In the first data set, which we refer to as Yale data, we applied our parcellation algorithm 

to each functional run, generating one parcellation atlas for each condition and each 

scanning session (8 conditions × 30 sessions = 240 atlases total). By taking the relative 

majority vote over all sessions of each condition, we generated condition-specific 

parcellations. Figure 2a visualizes these parcellations using a force-directed graph, with 

edge weights indicating the similarity between parcellations, measured by rHamming, which 

estimates the percentage of voxels with similar parcel assignment. Parcels are colored by 

the magnitude of reconfiguration in the given condition relative to Rest 1, where 

reconfiguration is defined as the percentage of voxels that change their parcel 

assignment. Figure 2a demonstrates that parcels with high reconfiguration are broadly 

distributed and condition specific. Increased similarity of reconfiguration maps is 

observed (Figure 2a) among condition-specific parcellations with increased pairwise 

similarity (Figure 2b). Consistent with our expectations, Rest 1 and Rest 2 parcellations 

are highly similar to each other, while the parcellation for the movie-watching condition 

is the most distinct (Figure 2). For visualization and interpretation purposes, we created a 

video of these state-specific parcellations (Video S1) as well as an interactive brain 

visualization platform (see 

http://htmlpreview.github.io/?https://github.com/YaleMRRC/Node-

Parcellation/blob/master/Parcellation_visualization.html). 
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Figure 2. Visualization of the condition-specific functional atlases. (a) Condition-specific 
functional atlases are visualized in a force-directed graph, with edge weights indicating the 
similarity between parcellations, measured by rHamming = 1 - normalized Hamming distance. Force-
directed graphs attempt to visually organize networks such that the energy of the graph as a whole 
is minimized. This is accomplished by assigning both repulsive and attractive forces to each pair 
of nodes such that the nodes with stronger interconnections are displayed closer to each other and 
the ones with weaker connections are more distant. Brain size is proportional to the graph theory 
measure degree. Edge thickness is proportional to the edge weights. Parcels are colored by the 
magnitude of reconfiguration in the given condition relative to Rest 1. (b) Cross-condition 
parcellation similarity measured by rHamming. 

 

  



 

 

 

243 

3.1 Statistical voting-based ensemble analysis  

We quantitatively examined these parcellation changes across conditions using the 

statistical voting-based ensemble method (see Methods). The results demonstrate that 

parcellations are significantly more similar within each functional condition than across 

different conditions, both for fine-scale (Figure 3a, d; K-S test; p<0.001) and coarse scale 

similarity measures (Figure 3b, e; K-S test; p<0.001). This finding suggests that 

parcellations are highly reproducible within a functional condition, and rearrange 

significantly between conditions. These changes are reflected even in a coarse-scale 

feature of spatial topography, i.e., parcel-size. 

 

3.2 Functional state decoding using parcel size as feature 

Next, we demonstrate that the observed task-induced parcellation reconfiguration is 

consistent across sessions and specific to each condition. To this end, we built a cross-

validated predictive model that predicts the functional condition under which novel runs 

were acquired based solely on the parcel size vector. Prediction accuracies—measured as 

precision and recall for each condition—were significantly higher than random for all 

conditions (mean accuracy = 71%; Figure 3c). That a measure of spatial topography as 

coarse as parcel size can significantly predict which task a subject is performing suggests 

that functional brain atlases reconfigure with task-induced brain state in a consistent 

manner, forming a generalizable and robust signature of brain organization during that 

condition. Successful prediction also demonstrates that cross-condition reconfigurations 

are not driven by noise. 
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3.3 Task performance prediction using parcel size as feature 

While the overall stability of the functional atlases within each condition was high, subtle 

variations were observed across different sessions of the same condition. To examine if 

parcel reconfigurations contain meaningful session-specific information, we attempted to 

predict task performance using parcel size as the model feature. Task performance was 

used as a proxy for level of engagement in the task, reflecting more fine-grained 

variations in brain state than cannot be captured by simply considering task as a state (see 

Methods for details of the behavioral measures that were used for each task). Task 

performance was successfully predicted from parcel sizes (Figure 3e), indicating that 

reconfigurations from session-to-session within a task condition reflect meaningful 

changes in brain function. The success of these predictions again rules out the possibility 

that even session-to-session reconfigurations are driven by noise. 
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Figure 3. Parcel definitions change with task condition; Yale single-subject data.  a) Pairwise 
parcellation similarity was calculated within and across functional conditions (8 conditions, N=30 
sessions), using voting-based ensemble analysis with 1000 iterations. The matrix represents the 
average over all iterations. Similarity was assessed by rHamming = 1 – normalized Hamming 
distance. b) The same analysis as (a) was performed, this time using rank correlation of parcel-
size vectors (rSpearman) as a proxy for parcellation similarities. c) The bars reflect the accuracy of 
predicting the functional condition using a leave-one-out cross-validated GBM classifier with 
parcel sizes as features. The predictive power is measured by precision (dark cyan) and recall 
(light cyan) values for each condition. The precision (black) and recall (gray) values of 1000 null 
models are also reported (error bars represent ±s.d.). d) A histogram of the parcellation 
similarities for all 1000 iterations is depicted for within-condition (diagonal elements in [a]) and 
cross-condition (off-diagonal elements in [a]) comparisons. Rest 1 and Rest 2 are grouped into 
one condition. The within- and cross- distributions are significantly different (K-S test; p<0.001). 
e) A histogram of the parcel size similarities for all 1000 iterations is depicted for within-
condition (diagonal elements in [b]) and cross-condition (off-diagonal elements in [b]) 
comparisons. Again, the two distributions are significantly different (K-S test; p<0.001). f) The 
bars report the accuracy of predicting task performance using a leave-one-out cross-validated 
linear regression model with parcel sizes as features. Predictive power is measured by square root 
of coefficient of determination (r-value). The r-values of 1000 null models (for permutation 
testing) are also reported (error bars represent ±s.d.).  
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3.4 Voxel uncertainty analysis 

Figure 4a shows that the majority of the voxels have less than 10% uncertainty in their 

parcel assignment, suggesting that the parcellations are reliable within a functional 

condition. Figure 4b visualizes the spatial distribution of voxel uncertainty in the brain. 

From this visualization, it is clear that the shape of the white areas in each parcel, 

representing voxels with low uncertainty (uncertainty < 10%), changes substantially 

between conditions, suggesting that the state-evoked reconfigurations are not simply 

driven by noisy boundaries, but that stable voxels form parcels of different shapes. 
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Figure 4. Voxel uncertainty analysis. Voxel uncertainty was computed for each functional 
condition as the proportion of times across 1000 iterations of the voting-based ensemble analysis 
that the voxel was assigned to different parcels between group 1 and group 2 (see Methods). a) 
The histogram of voxel uncertainty for each functional condition. b) The spatial distribution of 
voxel uncertainty on the brain, visualized in a force-directed graph with edge weights indicating 
the similarity between voxel uncertainty distributions across conditions, measured by rSpearman. 
Brain size is proportional to the graph theory measure degree. Edge thickness is proportional to 
the edge weights. Voxels with a low uncertainty (uncertainty < 10%) are shown in white, and the 
parcels defined by these clearly change shape between conditions. The rest of the voxels 
(uncertainty > 10%) are shown in blue. 
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3.5 Replication of the state-evoked atlas reconfiguration across data sets 

3.5.1 Midnight Scan Club (MSC) data set 

We replicated our main findings by leveraging a publicly available data set: Midnight 

Scan Club (MSC) (Gordon et al., 2017b). For each individual, we repeated the voting-

based ensemble analysis described above and calculated the similarity between each task- 

(or rest-) based pair of parcellations. Figure 5 demonstrates the pairwise parcellation 

similarities, averaged over individuals (Figure 5a, d: fine-scale similarity; Figure 5b, e: 

coarse-scale similarity). Figure S1 shows the similarity matrices of each individual 

separately. Confirming the finding from the single-subject data described above, we 

observed that functional atlases are significantly more similar within condition than 

across conditions (K-S test, p<0.001). Similarly, parcel sizes are significantly more 

similar within a condition (K-S test, p<0.001). Predictive modeling based on parcel size 

could significantly predict condition for a novel run (mean accuracy = 66%; Figure 5c) 

and generalized across individuals. That all the predictions were successful, and 

consistent across individuals, is a strong indication of the significance of functional 

parcel reconfigurations associated with different tasks. The findings from this 

independent data set replicate the single-subject findings. 
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Figure 5. Replication of the finding that parcel definitions change with task condition; 
Midnight Scan Club (MSC) data. a) Pairwise parcellation similarity was calculated within and 
across functional conditions, averaged over all individuals (8 conditions, N=10 sessions, n=8 
subjects). For every individual, voting-based ensemble analysis was used with 100 iterations. The 
matrix represents the average over all iterations. Similarity was assessed by rHamming = 1 – 
normalized Hamming distance. b) The same analysis as (a) was performed, this time using rank 
correlation of parcel-size vectors (rSpearman) as a proxy for parcellation similarities. c) The bars 
report the accuracy of predicting the functional condition using a leave-one-out cross-validated 
GBM classifier with parcel sizes as features. The predictive power is measured by the precision 
(dark cyan) and recall (light cyan) values for each condition. The precision (black) and recall 
(gray) values of 1000 null models are also reported (error bars represent ±s.d.). d) A histogram of 
parcellation similarities for all 100 iterations (averaged over all individuals) is depicted for 
within-condition (diagonal elements in [a]) and cross-condition (off-diagonal elements in [a]) 
comparisons. Sem-Coh 1 and Sem-Coh 2 are grouped into one condition, as are Motor 1 and 
Motor 2 conditions. The within- and cross- distributions are significantly different (K-S test; 
p<0.001). e) A histogram of parcel size similarities for all 100 iterations (averaged over 
individuals) is depicted for within-condition (diagonal elements in [b]) and cross-condition (off-
diagonal elements in [b]) comparisons. The two distributions are significantly different (K-S test; 
p<0.001). Sem-Coh, semantic-coherence task; Memory F, S, and W, incidental memory task with 
faces, scenes, and words stimuli, respectively. 
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3.6 Human Connectome Project (HCP) data set 

The results from the previous two data sets relied upon the construction of individual 

atlases across both sessions and conditions and were evaluated in terms of how the atlas 

within an individual changed between conditions. Next, we used the Human Connectome 

Project (HCP) 900 Subjects release (S900) data (Van Essen et al., 2013) to determine if 

such condition-dependent reconfigurations could be observed when measured across 

multiple subjects introducing additional variance through inter-subject anatomic 

differences. We repeated the voting-based ensemble analysis described above, this time 

replacing sessions with subjects, such that we considered multiple subjects in multiple 

conditions and calculated the similarity between each pair of parcellations. Figure 6 

demonstrates the pairwise parcellation similarities across subjects. Despite the 

introduction of inter-individual anatomic and functional organization variance, the 

primary finding that the parcellation map changes with condition remains highly 

significant (Figure 6a, d: fine-scale similarity [K-S test, p<0.001]; Figure 6b, e: coarse-

scale similarity [K-S test, p<0.001]). As an even stronger assessment of generalizability, 

we repeated our previous analysis to predict, based on parcel size, the task during which 

the data were collected for previously unseen subjects. Given that we had a larger sample 

size (n=514), we further challenged our model by employing a more rigorous 10-fold 

cross-validated pipeline (rather than leave-one-out). We observed that our model could 

significantly predict, in novel subjects, the task administered while the data were acquired 

(Figure 6c, mean accuracy = 73%) based on parcel size, alone. This observation is an 

even stronger replication of our main findings; that is, the observed state-evoked 
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parcellation reconfigurations are robust and reliable not only across different sessions, but 

also across distinct individuals.  
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Figure 6. Replication of the finding that parcel definitions change with task condition, even 
when considered across individuals; Human Connectome Project (HCP) data. a) Pairwise 
parcellation similarity was calculated within and across functional conditions (9 conditions, 
n=514 subjects), using voting-based ensemble analysis with 1000 iterations. The matrix 
represents the average over all iterations. Similarity was assessed by rHamming = 1 – normalized 
Hamming distance. b) The same analysis as (a) was performed, this time using rank correlation of 
parcel-size vectors (rSpearman) as a proxy for parcellation similarities. c) The bars report the 
accuracy of predicting the functional condition using 10-fold cross-validated GBM classifier with 
parcel sizes as features, iterated 100 times. The predictive power is measured by precision (dark 
cyan) and recall (light cyan) values for each condition (reported as mean and s.d. across 
iterations). The precision (black) and recall (gray) values of the 1000 null models are also 
reported (error bars represent ±s.d.). d) A histogram of the parcellation similarities for all 1000 
iterations is depicted for within-condition (diagonal elements in [a]) and cross-condition (off-
diagonal elements in [a]) comparisons. Rest 1 and Rest 2 are grouped into one condition. The two 
distributions are significantly different (K-S test; p<0.001). e) A histogram of the parcel size 
similarities for all 1000 iterations is depicted for within-condition (diagonal elements in [b]) and 
cross-condition (off-diagonal elements in [b]) comparisons. The two distributions are 
significantly different (K-S test; p<0.001). WM, working-memory task; Gam, gambling task, 
Mot, motor task; Lan, language task; Soc, social task; Rel, relational task; Em, emotion task. 
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3.7 Robustness of the state-evoked atlas reconfiguration across scales 

In our final analysis, we sought to address the question of parcellation scale, asking if 

these reconfigurations are simply due to the rather large parcel sizes typically targeted in 

current parcellation approaches. If the parcel resolution were too low, then it could be the 

case that our parcels are composed of smaller subunits that do not change their shape but 

potentially exhibit altered connectivity with the other subunits dependent upon the 

functional state (hence modifying how they are grouped into a single parcel). If this is the 

case, then making atlases with more parcels should get to a level where the parcels 

remain unchanged even with changes in brain state. In the limit of parcels reduced to the 

size of a voxel, there can be no condition-induced change in parcel definition since the 

parcel is defined by the voxel size. Here we attempted to determine the critical resolution 

at which parcellations stabilize. To address this question, we repeated our analyses with 

Yale data, using atlases containing greater numbers of parcels, from 368, to 1041, to 5102 

parcels (see Methods). In each case, parcel reconfigurations were observed, even when 

the number of parcels was increased to 5102, more than ten times the typical number of 

parcels used in functional connectivity analysis (Bellec et al., 2015; Nieuwenhuys, 2013; 

Van Essen et al., 2012) (Figure 7). Results with 368-parcel and 1041-parcel atlases are 

reported in Figure S2 and Figure S3, respectively. To date, the human neuroscience 

community has not considered atlases with 5000 or more parcels.  
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Figure 7. Parcel size effects: Even for an atlas with 5102 parcels (on average 25 voxels per 
parcel), parcel definitions change with task condition, with high reliability within conditions. a) 
Pairwise parcellation similarity was calculated within and across functional conditions, using 
voting-based ensemble analysis with 1000 iterations. Similarity was assessed by rHamming = 1 – 
normalized Hamming distance. b) The same analysis as (a) was performed, this time using rank 
correlation of parcel-size vectors (rSpearman) as a proxy for parcellation similarities. c) The 
histogram of the parcellation similarities for all 1000 iterations is depicted for within-condition 
(diagonal elements in [a]) and cross-condition (off-diagonal elements in [a]) comparisons. The 
two distributions are significantly different (K-S test; p<0.001). d) The histogram of the parcel 
size similarities for all 1000 iterations is depicted for within-condition (diagonal elements in [b]) 
and cross-condition (off-diagonal elements in [b]) comparisons. The two distributions are 
significantly different (K-S test; p<0.001). 
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 Discussion 

Together, these findings suggest that there is no single functional atlas for the human 

brain. The boundaries of functionally defined parcels change with changes in brain state 

in a consistent and reproducible manner. These reconfigurations appear to be cognitively 

meaningful, as evidenced by their utility in predictive models of task condition and 

within-condition task performance. 

 

4.1 Reconfiguration of the connectome 

These results are consistent with the extensive evidence for reconfigurations of the 

functional connectome. There is growing evidence that patterns of functional 

connectivity change with changing brain states (e.g., as induced by distinct tasks), and 

that these changes are functionally significant (Greene et al., 2018). Recent work has 

highlighted individual differences in parcel spatial configuration and their impact on 

brain-behavior relationships (Bijsterbosch et al., 2018), but the common assumption that 

parcel boundaries are fixed for a given individual remains unchallenged. In fact, we show 

that while boundary reconfigurations may be relatively modest overall, they are highly 

task-specific, consistent, and functionally significant both within and across individuals, 

suggesting that tasks induce reliable perturbations of a core functional architecture of the 

human brain. Taking such reconfigurations into account may further inform efforts to 

relate changing patterns of functional connectivity to behavior, clinical symptoms, and 

cognition.  

The stability of the state-evoked boundary reconfigurations across a large cohort of 

individuals, as demonstrated by the HCP data (Figure 6), is important. Previous work has 
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shown that patterns of functional connectivity are unique to each individual (Finn et al., 

2015), and any state-evoked reconfigurations are also individual-specific (Gratton et al., 

2018). That the average of these state-evoked reconfigurations across individuals does 

not mask out the effect of brain state is a significant finding, suggesting that task-induced 

parcel reconfigurations are not idiosyncratic and subject-specific, but rather robust and 

generalizable; that is, despite significant individual differences in brain functional 

organization, task-induced changes in this organization, as reflected in parcel boundary 

shifts, are highly similar across individuals. 

 

4.2 Composition of functional subunits 

The cause of such parcel reconfigurations remains an important open question. At the 

atlas sizes considered here, any individual functional parcel will contain hundreds of 

thousands of neurons and may span multiple cortical subareas (Van Essen and Glasser, 

2018), and a growing literature suggests that the BOLD signal can be used to identify 

inter-digitated neural representations, even within a circumscribed area with well-defined 

functional specialization (Haxby, 2012; Haxby et al., 2014; Norman et al., 2006). And 

while it is possible that focal task activations affect parcel boundaries, they do not fully 

explain the present results, as parcel reconfiguration is broadly distributed across the brain, 

and change in parcel size relative to rest is not related to parcel task activation (Figure S6). 

Furthermore, the same results were obtained even after exclusion of voxels with 

significant task activations (Figure S7). Together, this suggests a more complex picture of 

parcels in flux across the brain, wherein different groups of neurons synchronize to 

execute different tasks resulting in different parcel definitions. It is possible that invariant 
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boundaries may not be found until the acquisition resolution is of the order of a 

fundamental cortical unit, such as microcolumns (300 – 500 µm) (Molnár, 2013; 

Mountcastle, 1957) or less. This presents an exciting opportunity for future work with 

high-field fMRI to interrogate the underpinnings of boundary shifts at high resolution.  

The existence and nature of such a fundamental unit—and its potential impact on the 

BOLD signal—are open questions, but regardless of their answer, the findings here of 

substantial parcel reconfiguration even at atlas sizes of 5000 parcels (consisting of, on 

average, 25, 2 mm3 voxels, or ~5.8 mm3 of tissue), suggest that current human functional 

parcellation atlases are far from this limit. Nevertheless, our goal does not have to be 

identifying parcels that correspond to a minimal functional or computational unit. In 

practice, a parcel that has a homogeneous, distinct identity in a given state is 

sufficient for many analyses. In other words, as long as the atlas is consistent for the 

state of interest, atlases with 200 – 400 parcels are entirely appropriate.  

 

4.3 Additional considerations 

The exemplar-based parcellation approach used in this work imposes a constraint that 

holds the total number of parcels fixed and eliminates the problem of establishing 

correspondence between parcels under different conditions. Maintaining correspondence 

across parcellations facilitates quantitative assessment of the change in each parcel. It is 

possible that parcels not only reconfigure, but also blend and/or split, leading to a change 

in the total number of parcels with a change in brain state. This additional degree of 

freedom would make quantification of parcel changes across atlases obtained under 

different conditions more difficult due to the correspondence problem, while also 
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potentially amplifying our main finding that there is no fixed functional atlas at the scale 

typically used in fMRI studies. In other words, without an exemplar-based approach, the 

reconfiguration of these parcels would likely be more extensive than that shown here. 

The algorithm presented also constrains parcels to be contiguous. Without this 

constraint, it is possible for connectivity-based parcellations to group voxels, that may be 

widely separated spatially, into single parcels with very high homogeneity in their time-

courses. If parcels are allowed to be non-contiguous, it becomes an open question as to 

how much distance is allowed between the different parts of a parcel. With no 

consideration given to spatial contiguity, a successful parcellation algorithm could simply 

rank voxel time-courses by similarity and then split this ranking into n parcels, which 

would provide maximal parcel homogeneity (a common measure of parcellation success), 

but would identify broadly distributed brain networks rather than functionally 

specialized, circumscribed brain regions. 

The present work focuses on defining parcels with hard boundaries. However, one can 

use the voxel uncertainties to define soft borders, as displayed in the blue boundaries in 

Figure 4. One can also define a probabilistic soft parcellation by considering the 

consistency of voxel-to-parcel assignments across different functional conditions. While 

defining such soft borders is feasible, most parcellation approaches to date have focused 

on hard boundaries. One application of such functional atlases is in building connectivity 

matrices, and with soft boundaries the question of how to weight the time-courses across 

these boundaries is currently unanswered. Given the use of parcellations with hard 

boundaries for validated, commonly used functional connectivity analysis pipelines, we 

chose to focus here on such hard boundaries. 
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States are defined in this work as task conditions with acquisitions spanning a series of 

continuous performance, event-related, and blocked tasks. It is likely that parcel 

reconfiguration occurs over considerably shorter periods of time than these minutes-long 

task intervals, particularly given the growing literature on the dynamic nature of 

functional brain organization (Cohen, 2018) and the present finding that there are 

meaningful, state-induced changes in parcellation boundaries within a given task (i.e., 

that task performance can be predicted from parcel size). Future work may seek to 

characterize how parcellation boundaries shift to reflect the dynamic reconfiguration of 

macroscale neural circuitry underlying moment-to-moment changes in brain state. 

This work also does not invalidate multimodal parcellation approaches that combine 

both anatomical and functional data (including functional data across a wide range of task 

and resting states), but suggests that such approaches, by defining a mean atlas across 

states, may mask meaningful and informative functional reconfigurations associated with 

specific brain states. 

 

4.4 Implications 

Essentially all publications to date that employ parcellations with hard boundaries have 

used fixed atlases at the group or individual level, with parcel boundaries defined 

anatomically or functionally (or through a combination of methods). Such work assumes 

that parcel boundaries do not change meaningfully for a given individual or group, but 

the findings here suggest that this is not the case for atlases defined using functional MRI 

data. While functional parcel reconfigurations would not affect results generated using 

data collected during a single state, they may affect investigations of connectivity 
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changes across states. More generally, it suggests that a single functional parcellation 

applicable to all brain states is not appropriate. Further, these findings suggest that state-

dependent changes in connectivity could be attributable in part to reconfiguration of the 

underlying parcellation, and this should be considered as part of the interpretation of 

changes in connectivity that occur across different cognitive conditions. 

It has been posited that imposing an atlas on the brain is simply a data-reduction 

strategy to reduce the connectivity matrix to a manageable size. This may indeed be a 

useful feature (for a discussion, see Eickhoff et al. (Eickhoff et al., 2018)), and this work 

does not impact its utility. The findings here, however, support the notion that function-

based parcellations are not only a means of data dimensionality reduction but also a way 

to reveal meaningful patterns of, and changes in, brain functional organization. The 

results demonstrating prediction of state and performance based on the particular parcel 

size support this conclusion. 

New approaches to individualized parcellation, such as the approach used in this work, 

could potentially lead to custom state-dependent atlases for individuals or groups, which 

may in turn provide further insight into understanding state-dependent functional 

reorganization of the human brain. Much work needs to be done to understand the 

relationship between functional edge strength measures and these variable parcel 

configurations, and the impact of these variables on functional connectivity measures in 

both health and disease. It is an open question whether fixed functional subunits, 

invariant to brain state, can be defined in the human cortex with current state-of-the-art 

neuroimaging methods. We do know from these results however, that such an atlas would 

need to have more than 5000 parcels. Nevertheless, state-dependent changes in 
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parcellation boundaries offer an important tool to study neural representation and 

dynamic interactions in the human brain. 

 

 Conclusion 

This work demonstrates that there is no single functional atlas for the human brain at the 

200 – 5000 parcel resolution level, but rather that parcels reconfigure depending on task-

induced state in a robust and reliable manner. Such reconfigurations are distinct and 

reliable enough to use quantitative parcellation characteristics (i.e., parcel size) to predict 

task condition across multiple tasks, as well as within-task performance. That functional 

parcel definitions are fluid must be considered when interpreting changes in functional 

connectivity patterns across states. Such parcel reconfigurations may be leveraged to 

better understand dynamic changes in functional organization of the human brain. These 

results therefore provide another mechanism by which to understand the flexible brain 

and how it reconfigures to perform the task at hand. The derivation of state-specific, 

individualized functional atlases could provide an important tool for human neuroscience, 

and this work calls for the continued development and validation of such approaches. 

 

 Code and Data Availability 

All the functional parcellations are available online on the BioImage Suite NITRC page 

(https://www.nitrc.org/frs/?group_id=51). An interactive visualization of the state-

specific parcellations can be found here: 

http://htmlpreview.github.io/?https://github.com/YaleMRRC/Node-

Parcellation/blob/master/Parcellation_visualization.html. MATLAB, C++ (for 
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parcellation algorithm), and Python (for predictive modeling) scripts were written to 

perform the analyses described; these codes are available on GitHub at 

https://github.com/YaleMRRC/Node-Parcellation.git. The force-directed graph 

visualization (R script) is released separately under the terms of GNU General Public 

License and can be found here: https://github.com/YaleMRRC/Network-

Visualization.git. Three data sets were used to support the findings of this study. Yale 

data are publicly available at International Neuroimaging Data-sharing Initiative (INDI) 

[http://fcon_1000.projects.nitrc.org/]. Midnight Scan Club (MSC) data are publicly 

available through the Open fMRI data repository at 

https://openneuro.org/datasets/ds000224/versions/00002. Human Connectome Project 

(HCP) data (S900) are publicly available at 

https://www.humanconnectome.org/study/hcp-young-adult/document/900-subjects-data-

release. 
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 Supplemental Materials 

 
 
Figure S1. Individual level replication of the finding that parcel definitions change with task 
condition; Midnight Scan Club (MSC) data. Pairwise parcellation similarity was calculated for 
each individual, within and across functional conditions. For every individual, voting-based 
ensemble analysis was used with 100 iterations. The matrix represents the average over all 
iterations. Similarity was assessed by rHamming = 1 – normalized Hamming distance. b) The same 
analysis as (a) was performed, this time using rank correlation of parcel-size vectors (rSpearman) as a 
proxy for parcellation similarities. 
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Figure S2. Replication of the finding that parcel definitions change with task condition, 
using parcellation of size 368 parcels; Yale data. a) Pairwise parcellation similarity was 
calculated within and across functional conditions, using voting-based ensemble analysis with 
1000 iterations. Similarity was assessed by rHamming = 1 – normalized Hamming distance. b) The 
same analysis as (a) was performed, this time using rank correlation of parcel-size vectors 
(rSpearman) as a proxy for parcellation similarities. c) The histogram of the parcellation similarities 
for all 1000 iterations is depicted for within-condition (diagonal elements in [a]) and cross-
condition (off-diagonal elements in [a]) comparisons. The two distributions are significantly 
different (K-S test; p<0.001). d) The histogram of the parcel size similarities for all 1000 
iterations is depicted for within-condition (diagonal elements in [b]) and cross-condition (off-
diagonal elements in [b]) comparisons. The two distributions are significantly different (K-S test; 
p<0.001). 
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Figure S3. Replication of the finding that parcel definitions change with task condition, 
using parcellation of size 1041 parcels; Yale data. a) Pairwise parcellation similarity was 
calculated within and across functional conditions, using voting-based ensemble analysis with 
1000 iterations. Similarity was assessed by rHamming = 1 – normalized Hamming distance. b) The 
same analysis as (a) was performed, this time using rank correlation of parcel-size vectors 
(rSpearman) as a proxy for parcellation similarities. c) The histogram of the parcellation similarities 
for all 1000 iterations is depicted for within-condition (diagonal elements in [a]) and cross-
condition (off-diagonal elements in [a]) comparisons. The two distributions are significantly 
different (K-S test; p<0.001). d) The histogram of the parcel size similarities for all 1000 
iterations is depicted for within-condition (diagonal elements in [b]) and cross-condition (off-
diagonal elements in [b]) comparisons. The two distributions are significantly different (K-S test; 
p<0.001). 
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Figure S4. Replication of the finding that parcel definitions change with task condition, even 
when exemplar for each parcel is fixed across sessions and conditions; Yale data. Indication 
of robustness of the results to the choice of exemplar, such that even with identical exemplars 
across sessions and conditions, parcels reconfigure reliably based on the brain state. a) Pairwise 
parcellation similarity was calculated within and across functional conditions, using voting-based 
ensemble analysis with 1000 iterations. Similarity was assessed by rHamming = 1 – normalized 
Hamming distance. b) The same analysis as (a) was performed, this time using rank correlation of 
parcel-size vectors (rSpearman) as a proxy for parcellation similarities. c) The histogram of the 
parcellation similarities for all 1000 iterations is depicted for within-condition (diagonal elements 
in [a]) and cross-condition (off-diagonal elements in [a]) comparisons. The two distributions are 
significantly different (K-S test; p<0.001). d) The histogram of the parcel size similarities for all 
1000 iterations is depicted for within-condition (diagonal elements in [b]) and cross-condition 
(off-diagonal elements in [b]) comparisons. The two distributions are significantly different (K-S 
test; p<0.001). 
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Figure S5. Replication of the finding that parcel definitions change with task condition, even 
with a different parcellation algorithm: Wang’s iterative parcellation; Yale data. a) Pairwise 
parcellation similarity was calculated within and across functional conditions, using voting-based 
ensemble analysis with 1000 iterations. Similarity was assessed by rHamming = 1 – normalized 
Hamming distance. b) The same analysis as (a) was performed, this time using rank correlation of 
parcel-size vectors (rSpearman) as a proxy for parcellation similarities. c) The histogram of the 
parcellation similarities for all 1000 iterations is depicted for within-condition (diagonal elements 
in [a]) and cross-condition (off-diagonal elements in [a]) comparisons. The two distributions are 
significantly different (K-S test; p<0.001). d) The histogram of the parcel size similarities for all 
1000 iterations is depicted for within-condition (diagonal elements in [b]) and cross-condition 
(off-diagonal elements in [b]) comparisons. The two distributions are significantly different (K-S 
test; p<0.001). 
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Figure S6. Correlation between the task activation maps and parcel size differences relative 
to rest. The Spearman correlation between the task activation per parcel and the difference in the 
parcel size (from every task run to the first rest run [Rest 1]) is displayed. (a) Yale data; task 
activation was approximated for each parcel as the difference between the average temporal 
signal during each task run and the first rest run (Rest 1). (b) HCP data; task effect size maps 
were generated using all available individuals’ volume-based, FEAT-analyzed, first-level GLM 
output (COPE files) from the 1200 Subjects Release (S1200) for a given task to generate, using 
FSL FEAT's FLAME (FMRIB's Local Analysis of Mixed Effects), cross-subject, voxel-wise 
Cohen's d effect-size contrast maps from t-statistic maps. These values were then averaged for 
each parcel to yield a mean task effect size per parcel for each task. 
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Figure S7. Replication of the finding that parcel definitions change with task condition, even 
after eliminating parcels with significant task activation, for (a) Yale data, and (b) HCP 
data. Left panels display the pairwise parcellation similarity, calculated within and across 
functional conditions, using voting-based ensemble analysis with 1000 iterations. Similarity was 
assessed by rank correlation of parcel-size. Right panels display the histogram of the parcel size 
similarities for all 1000 iterations for within-condition (diagonal elements in [a]) and cross-
condition (off-diagonal elements in [a]) comparisons. The two distributions are significantly 
different (K-S test; p<0.001). a) For Yale data, task activations were approximated per parcel by 
computing the difference between the average temporal signal during task and rest. b) For HCP 
data, task effect size maps were generated using all available individuals’ volume-based, FEAT-
analyzed, first-level GLM output (COPE files) from the 1200 Subjects Release (S1200) for a 
given task to generate, using FSL FEAT's FLAME (FMRIB's Local Analysis of Mixed Effects), 
cross-subject, voxel-wise Cohen's d effect-size contrast maps from t-statistic maps. These values 
were then averaged for each parcel to yield a mean task effect size per parcel for each task. 
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Figure S8.  Statistical comparison of head motion across functional conditions; Yale data. a) 
Mean frame-to-frame displacement is computed for every functional condition, displayed as a 
box plot over sessions, where the central mark indicates the median, and the bottom and top edges 
of the box indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most 
extreme data points not considered outliers, and the outliers are plotted individually. b) A 
pairwise Wilcoxon signed-rank test was performed on the mean frame-to-frame displacement. P-
values are reported after Bonferroni correction for multiple comparisons. 
 



Chapter 8: Conclusion and Future work 

 

 

 

Here, I presented a data-driven, submodularity-based methodology to human brain data 

summarization, which leads to increased insight about brain function and its link to 

behavior. All the projects described here are united in their emphasis on individual and 

state variability in in human brain functional organization. I hope the presented findings 

inspire future research on developing individualized and state-dependent approaches to 

understanding the brain. Below, I offer an overall summary of the main findings, and 

how they may help shape the future direction of human brain research.  

 

 Summary 

In chapter 2, I discussed a novel data-driven, predictive approach to characterizing human 

brain attention, which is based on higher-order connectivity measure. Results show that a 

model based on the flexibility of the connections during sessions of rest and task can 

predict individual differences in attentional ability, and generalize across novel 

individuals, scanning sites, attentional tasks, and behavioral measures. Further 

investigation of the parameters of the model revealed that individuals with higher 

stability during task sessions and higher flexibility during resting-sates had higher 

attentional ability. The extracted information from the state differences and individual 

variability, motivated the study presented in the subsequent chapters.  
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In particular, while in chapter 2 we started form global atlas definitions, the substantial 

variability of connectivity measures raised two questions: 1) Whether the underling atlas 

varies across individuals in a functionally relevant manner, and 2) whether the functional 

atlas should be defined based on the underlying state or whether there is a single 

functional atlas that operates across all brain states. Chapter 3 and 4 attempted to answer 

the first and the second questions (respectively) at the network level, while Chapter 5, 6, 

and 7 extended it to the node level atlases.  

 

In chapter 3, I developed a parcellation algorithm for identifying individualized 

functional networks, and showed that the individualized differences in network 

definitions are substantial and systematic such that they reveal information about 

subgroups in the populations, here differences in individuals’ sex. The information 

extracted by the proposed parcellation approach is reliable and substantial enough to 

predict novel individual’s sex, suggesting that (i) network organization may differ across 

individuals and global configurations should not be assumed, and (b) the proposed 

approach can extract meaningful signals from the noisy individual variabilities. If a basic 

characteristic such as sex in a cohort of healthy subjects can be identified by network 

topography, it is reasonable to expect other characteristics such as cognition and 

psychiatric symptoms could also lead to individualized networks. Future work can build 

upon this method to investigate the link between differences in networks to differences in 

behavioral phenotypes or clinical symptoms.  

Chapter 4 extends this analysis to extract state-evoked differences in brain networks. I 

showed that even within an individual there is state-evoked differences in functional 
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network organization, considering which may lead to increased insight about the 

underlying cognitive processes. The observed difference, while subtle, are consistent 

across subjects, such that a simple vector of node-to-network assignment could 

significantly predict the underlying cognitive state of a novel individual brain.  

While the two previous chapters revealed promising results about the network 

organization of the brain, we ultimately wanted to move to node-level analysis to 

summarize the data from the ground up by grouping the voxels into functionally 

homogeneous nodes based on the synchrony of the time series. Chapter 5 proposes a 

novel submodular-based algorithm to individualized functional parcellation, starting from 

a generic group-level atlas. The proposed individualized method showed increased 

improvements in functional coherence and homogeneity of nodes. Further, functional 

connectivity matrices constructed from the individualized atlas showed increased 

predictive power as compared with the ones built on the group-level atlas. This raises the 

question that to what extent the individual differences in functional nodes are reliable and 

driven by individual’s idiosyncrasy rather than noise.  

In chapter 6, I answer this question demonstrating that an individual’s functional node 

atlas is unique and distinct enough from that of other individuals to identify him or her 

from the group. While nodes from the entire brain contributed to the identification power 

of the model, nodes from dorsal attention network and frontoparietal network emerged as 

the most distinctive, suggesting the potential relevance of the individual differences in 

node configuration to cognition. These findings suggest that individualized functional 

atlases are reliable enough to be integrated into the current connectivity pipelines which 

attempt to link individual differences in connectivity to differences in behavior. This 
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work could potentially inspire future research on personalized approaches to human brain 

parcellation. The uniqueness of individualized atlases (shown in Chapter 6), together with 

its utility in increasing the predictive power of the connectome-based predictive models 

(shown in chapter 5), suggest that the individualized atlases are functionally meaningful, 

and considering them instead of the generic group-averaged maps could enhance our 

understanding of the brain-behavior link and inspire future efforts in neuromarker 

discovery.  

Unlike fingerprints which remain essentially unchanged throughout lifetime, brain 

fingerprints dynamically change with the brain state. In Chapter 7, I show that as 

individuals engage in different cognitive challenges, their brain’s functional nodes 

reconfigure accordingly. I demonstrate that such reconfigurations are robust and reliable 

both within and across individuals, such that a measure of spatial topography as coarse as 

node size can predict the underlying cognitive state, approximated by the functional task, 

or the level of engagement in the task. This finding, that the brain functional atlas 

reorganizes with task, is different from what is traditionally assumed in the field. How to 

best characterize the human brain’s underlying functional atlas has been a fundamental 

question in neuroscience. There have been numerous efforts to advance our parcellation 

algorithms and extend our data limits to better approximate the underlying atlas, 

assuming that there is one, at least for a single individual.  Yet, here, grounded on 

rigorous methodology and empirical evidence, we demonstrate that the functional 

boundaries of the brain change reliably by task.  

The work presented here builds the foundation for future research into individualized 

and state-specific approaches to human brain parcellation, both at the network- and node-
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level. Establishing that brain maps are unique to each individual and display reliable 

state-evoked reconfigurations is an indication of their behavioral relevance, and their 

potential utility for personalized and data-driven approaches to psychiatric disorders.  

 

 Looking ahead: Future work and potential implications 

Human brain appears to be governed by two fundamental principles: functional 

specialization, and functional integration (within and across these specialized regions). 

Much research has been devoted to understanding each principle, and how their balance 

can give rise to a wide spectrum of cognitive processes and behavior. 

The functional specialization of the brain has received supports from extensive 

evidence (Kanwisher 2010; Pauli, et al. 2016; Yeo, et al. 2014). Traditionally, these 

function-location mappings were conducted through studies of patients with brain 

damage (e.g., Broca's area (Dronkers, et al. 2007) and Wernicke's area (Wernicke 1995)). 

More recently, studies based on task-based neuroimaging techniques have identified 

process-specific brain regions associated with different subsystems of cognitive 

processes. For example, in the attention community, the association of alerting with 

fronto-parietal cortex and thalamus, orienting with superior parietal lobe, and executive 

control with anterior cingulate and frontal areas was uncovered (Fan, et al. 2005). While 

these centralized function-location mappings provide a systematic approach to study 

human brain function, there is significant evidence that features of higher-order cognitive 

abilities such as attention and working memory are likely encoded in distributed neural 

systems involving networks of many regions (Finn, et al. 2015c). Accordingly, restricting 

our measurements to a specific region of the brain, activated during a task paradigm, may 
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not provide a holistic view of the complex cognitive mechanisms ranging from attention 

and memory to language and reasoning (Sternberg and Sternberg 2016).  

Neuroimaging-based functional parcellation approaches advocate a more holistic view 

as they allow parcellation of whole brain (Blumensath, et al. 2013; Chong, et al. 2017; 

Fan, et al. 2016; Glasser, et al. 2016; Gordon, et al. 2014a; Power, et al. 2011; Salehi, et 

al. 2017a; Shen, et al. 2013; Smith, et al. 2013a; Thomas Yeo, et al. 2011a; Van Essen 

2013). The present work falls in this category, and contributes to the rich body of 

literature on whole-brain functional parcellation, by extending these approaches to 

individualized and state-specific settings.  

The robustness and reliability of the functional parcellation reconfigurations is 

promising. That these reconfigurations contain information both about individuals and 

the underlying cognitive state is an important finding, calling for more personalized and 

state-dependent approaches to human brain mapping. However, the cause of such 

reconfigurations remains an important open question. One hypothesis is that the 

functional boundaries are changing to reflect the synchronization of the underlying subset 

of neurons in adaptation with the cognitive demands of the ongoing task. While this 

hypothesis could not be tested with current state-of-the-art fMRI acquisition resolutions 

(Uğurbil, et al. 2013), it presents an exciting opportunity for future work with high-field 

fMRI to interrogate the underpinnings of these boundary shifts.  

Animal studies can form an ideal candidate for testing such hypotheses as they provide 

substantially higher spatial resolution (at the scale of micrometers) and enable the use of 

invasive techniques (such as electrophysiological recordings and Calcium (Ca2+) 

imaging), integration of which could result in a more direct measurement of the neural 
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activity with higher precision and specificity. We have recently established a novel 

methodology for simultaneous mesoscopic Ca2+ imaging and fMRI in mice (Lake, et al. 

2019). Ca2+ imaging provides a powerful tool for measuring the neural activity at high 

spatiotemporal resolution with selective specificity to each cell-type. A multi-modal 

parcellation based on this dual-imaging data can offer new insight into mesoscopic 

reconfiguration of the functional nodes with task. Also, favored by the cell-type 

specificity of Ca2+ imaging, future work can address the contribution of each specific 

cell-type (e.g., pyramidal cells (PYR), parvalbumin (PV), somatostatin (SOM), 

vasoactive intestinal peptide (VIP)) to the underlying node reconfigurations.  

Another important future direction includes extending the current methodology to 

clinical populations. The current work can contribute to this central area of research in 

several ways: First, it is critical to investigate the brain map differences between healthy 

controls and patients. Previous work has addressed this question at the population level, 

highlighting the coarse differences in functional brain maps between the healthy controls 

and patients with Alzheimer’s Disease (Seeley, et al. 2007), schizophrenia (Jafri, et al. 

2008), psychosis (Schreiner, et al. 2017), autism (Nunes, et al. 2018), and major 

depressive disorder (Liu, et al. 2012). Yet, the substantial heterogeneity within each 

group, and its link to differences in symptomology and level of progression into the 

disease remains an important question for future investigations. In a recent work, we 

discovered different sub groups of depression can be predicted based on the individuals’ 

connectivity profiles (Barron, et al. 2018). Future work can investigate the existence of 

similar subgroups based on functional parcellation patterns. Furthermore, employing a 

group-level parcellation based on a cohort of healthy individuals may not be applicable 
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for a population of patients with brain lesions (e.g., brain tumors). Individualized 

approaches, like the work presented here, would facilitate the application of parcellation 

across a wider range of clinical populations. By enhancing the subject and state 

specificity of the brain maps, the proposed parcellation could empower the study of 

idiosyncratic disorders and complex neuropsychiatric conditions with high variability in 

individuals’ symptomology and disease trajectory.  

That the current summarization technique predicts a novel individual’s cognitive state 

from a pool of 8 tasks is promising, indicating the power of the model to extract relevant 

information. Yet, the current results are far from real-time decoding of the entire 

cognitive space. Future work can extend this methodology towards settings closer to real-

time thought inferences by taking advantage of streaming summarization algorithms 

(e.g., (Badanidiyuru, et al. 2014; Kazemi, et al. 2019)), and a more comprehensive task 

ontology (Poldrack, et al. 2011). Although a monolithic leap, if successful, it can have 

far-reaching scientific, clinical, and social implications, including the advancement of 

novel brain-controlled prosthetics, human-robot interactions, and the study of ephemeral 

phenomena, such as dreaming and meditation.  

Finally, the proposed state-specific individualized method can increase the 

information efficiency for the subsequent models built on these atlases. Recently, with 

advances in machine-learning techniques and increased accessibility of neuroimaging 

data sets, there has been increasing interest in developing predictive models that relate the 

human brain to behavioral phenotypes (Scheinost, et al. 2019; Yarkoni and Westfall 

2017). Such approaches generally rely on the functional connectomes built on fixed 

population-level atlases. Findings presented here suggests that one single functional atlas 
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may not be applicable across all individuals and states. Such population-based models 

could reduce specificity of the results, potentially masking real effects. Incorporating the 

individualized approaches from the beginning of the predictive pipeline could increase 

the amount of information related to each individual’s behavior.  

 

 Data and Code Availability 

Following upon the publication of these papers, I released our method for individualized 

and state-specific functional parcellation as part of our open-source software, BioImage 

Suite (https://bioimagesuiteweb.github.io/webapp/). All codes are provided online on our 

group’s GitHub page at https://github.com/YaleMRRC/. It is intended that the proposed 

algorithm help other investigators to implement customized atlases for their functional 

connectivity analysis, based on each individual’s underlying functional state. The 

proposed technology is attempted to facilitate usage of submodular based algorithms for a 

community of researchers across disciplines. It is made modular and simple to execute 

and requires little or zero machine learning and programming backgrounds, intended to 

broaden the range of audience who can take advantage of the proposed methodology. 

Together, the present work highlights the need and potential for individualized and 

state-specific parcellations in current fMRI pipelines. I hope this work motivates future 

studies to incorporate customized atlases into their analysis, which in turn, increases the 

efficacy of existing models, and increases the predictive power of the connectivity-based 

models.  
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