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In a nutshell, submodularity covers the class of all problems that exhibit some form of diminishing

returns. From a theoretical perspective, this notion of diminishing returns is extremely useful as

the resulting mathematical properties allow for provably efficient optimization. From a practical

perspective, diminishing returns appear in a wide variety of important real-world machine learning

problems including data summarization, recommender systems, neural network interpretability, and

influence maximization in social networks.

In this thesis, we will focus on three major challenges for modern machine learning applications of

submodularity: privacy, scalability, and sequences:

With the emergence of data privacy as one of the foremost controversies in today’s society, it is

imperative that each individual’s personal information be protected. However, machine learning is a

field that particularly relies on data. Without data, there is no learning. To tackle this challenge, we

adapt the foundational algorithms of submodularity to the framework of differential privacy, which

provides mathematically provable protection against information leaks.

On the opposite end of the spectrum of data challenges, we have the problem of too much data. As

we will see, many submodular algorithms run in linear time, but with the immense size of modern

datasets, even linear time may be too slow. To address this issue, we present novel approaches to

scalable submodularity with a specific focus on streaming and distributed frameworks.

Lastly, the vast majority of work and research on submodularity has been focused on set functions

where the order of the input and output is not important. While this is perfectly reasonable for many

problems, there are also many other machine learning problems (such as recommender systems),

where explicitly considering the order of data and solutions can lead to large gains. To this end, we

present vital advancements in the field of sequence submodularity.
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1. Introduction

Machine learning has seen an enormous amount of success in recent years: from mastery of simple

visual tasks such as object recognition (Krizhevsky et al., 2012; He et al., 2016) and image captioning

(Vinyals et al., 2015; Xu et al., 2015) to super-human achievements in game-playing (Mnih et al.,

2015; Silver et al., 2016; Vinyals et al., 2017). However, particularly with the proliferation of deep

learning (LeCun et al., 2015; Goodfellow et al., 2016), there has generally been a lack of theoretical

understanding behind many of the most popular approaches and frameworks.

This has led to a fierce debate in the machine learning community about the role of theory and inter-

pretability in a world where black-box models have traditionally attained the highest performance.

In stark contrast, submodularity (Fujishige, 2005; Bach, 2013) is one of the rare theoretically

grounded disciplines that has achieved practical adoption in the machine learning world. In short,

submodularity is a mathematical formalization of the intuitive notion of diminishing returns.

On the theory side, in addition to the fact that submodularity allows us to provide any theoretical

guarantees at all, many submodular algorithms are proven to be very efficient, running in linear

time or even faster. On the practical side, diminishing returns appear in a wide variety of impor-

tant real-world problems, thus providing ample area for application of submodular algorithms and

frameworks. Although it is also common in fields such as economics and operations research, sub-

modularity has been particularly popular in the machine learning world with applications including

data summarization (Mirzasoleiman et al., 2013; Lin and Bilmes, 2011; Kirchhoff and Bilmes, 2014),

variable selection (Krause and Guestrin, 2005), sensor placement (Krause et al., 2008), recommender

systems (Gabillon et al., 2013), crowd teaching (Singla et al., 2014), neural network interpretabil-

ity (Elenberg et al., 2017), active learning (Golovin et al., 2010; Guillory and Bilmes, 2010), network

inference (Gomez Rodriguez et al., 2010), and influence maximization in social networks (Kempe

et al., 2003).

In this thesis, we will focus on three main challenges for modern machine learning applications of

submodularity: privacy, scalability, and sequences:

• The topic of data privacy has emerged as one of the most contentious topics in today’s society.

On one hand, the simplest and most effective way to fully protect a user’s privacy is to not

collect or use any of their data. On the other hand, the explosion of available data in recent

years has been one of the primary reasons for the success of many machine learning models.

In section 3, we adapt the foundational algorithms of submodularity to the mathematical

1



framework of differential privacy (Mitrovic et al., 2017a). Intuitively speaking, an algorithm

is said to be differentially private if adding or removing any one individual’s data will not

cause a significant change to the outcome of the algorithm. The idea is that this protects the

privacy of all users by guaranteeing that an adversary cannot learn anything about any one

individual’s data.

• While the exponential growth in the amount of available data has certainly fueled a great

deal of progress in the field of machine learning, we have also begun to encounter the problem

of too much data. Although most submodular algorithms are based on linear-time greedy

subroutines, the sheer amount of data present in today’s datasets forces us to look for ap-

proaches that are even faster than linear time. In section 4, we present novel advancements

towards scalable submodularity. In addition to presenting improved algorithms for both the

single-stream and multi-stream settings (Kazemi et al., 2019), we also explore the two-stage

submodular framework (Mitrovic et al., 2018b). The goal here is to use some given training

functions to reduce the ground set so that optimizing new functions (drawn from the same

distribution) over the reduced set provides almost as much value as optimizing them over the

entire ground set.

• For many classical submodular problems (such as data summarization) the order of the input

and the output is irrelevant. For example, if we want to select just two images to summarize

New York City, we might select an image of the Statue of Liberty and an image of Times Square,

but regardless of which image is first, our summary is still essentially the same. Conversely, for

other problems commonly modelled using submodularity (such as recommender systems), the

order of the items selected can be just as important as the items themselves. For example, if we

are recommending movies, we might correctly predict that a user would enjoy the Lord of the

Rings franchise. However, if we recommend the movies in an incorrect order, the user might

end up completely confused and unsatisfied. In section 5, we present vital advancements to the

field of sequence submodularity (Mitrovic et al., 2018a, 2019), where we develop algorithms

that explicitly consider sequences instead of sets.

2
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Figure 1: Sensor placement example demonstrating (non-negative and monotone) submodularity.
Adding a new sensor s∗ to the set A = {s1, s2} (shown in part a) is more valuable than adding it to
the superset B = {s1, s2, s3} (shown).

2. Preliminaries

2.1 Definition of Submodularity

Intuitively, submodularity describes the set of functions that exhibit diminishing returns. Mathe-

matically, a set function f : 2V → R is submodular if, for every two sets A ⊆ B ⊆ V and element

v ∈ V \B, we have f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B). That is, the marginal contribution of

any element v to the value of f(A) diminishes as the set A grows.

We will use a simple sensor placement task as an illustratory example (see Figure 1). The goal in this

task is to place sensors to cover as much area as possible. Each sensor covers a predetermined area

and there is no advantage to covering the same area twice, so overlapping sensors generally want to

be avoided. This is where the notion of diminishing returns comes in for sensor placement.

For example, in Figure 1a, we have two existing sensors s1 and s2, and their area of coverage is

indicated by the blue circles. We see that placing the new sensor s∗ (whose area of coverage is

indicated by the red circle) will have a little bit of overlap with the existing sensors, but it will

mostly be covering new area, meaning it is quite valuable. On the other hand, in Figure 1b, we

already have three existing sensors (s1, s2, and s3), and we see that placing the same sensor s∗ will

result in much more overlap, thus meaning it is not covering as much new area and is therefore less

valuable.

In mathematical terms, we first define A = {s1, s2} to be the set of existing sensors in Figure 1a

and B = {s1, s2, s3} to be the set of existing sensors in Figure 1b. If we use V to denote the set

of all possible sensors, then it is clear that A ⊆ B ⊆ V . Next, let f(X) indicate the total area

3



covered by a set of sensors X. Therefore, f(A ∪ {s∗}) − f(A) denotes the additional area covered

by sensor s∗ given that the sensors in set A have already been placed. This is commonly known

as the marginal value or marginal gain of an item s∗ to a set A. As a shorthand, we generally use

f(s∗ | A) = f(A ∪ {s∗})− f(A) to denote the marginal gain of an element s∗ to the set A.

As discussed above, adding the new sensor s∗ is more valuable for set A than it is for set B. In other

words, we have f(s∗ | A) ≥ f(s∗ | B). In fact, for any new sensor v and any two sets A ⊆ B ⊆ V ,

we will have f(v | A) ≥ f(v | B), which is exactly the definition of submodularity. This is because

A ⊆ B implies that set B contains all the sensors in set A (and possibly more). As a result, adding

any new sensor v to set A will cover at least as much new area (and possibly more) as it would if it

were added to set B.

2.2 Types of Submodularity

A submodular function f is said to be monotone if f(A) ≤ f(B) for any two sets A ⊆ B ⊆ V .

That is, adding items to a set cannot decrease its value. Another way to think about this concept

is that the marginal gain of any element is greater than or equal to zero. This also applies to our

sensor placement example because adding a new sensor will certainly not decrease the total area of

coverage.

On the other hand, if a submodular function f is non-monotone, then the marginal gain of an

item can be negative. Although this might not sound particularly intuitive, an excellent introductory

example is the maximum cut problem. Intuitively, the goal is to partition the vertices of a given

graph into two groups such that the number of edges going between the two groups is maximized.

In more mathematical terms, we are given a graph G = (V,E) and the goal is to select a set A ⊆ V

that maximizes

f(A) =
∑

u∈A,v∈V \A

1u,v

where 1u,v is the indicator function for the existence of the edge (u, v). That is, 1u,v = 1 if (u, v) ∈ E,

and 0 otherwise.

Figure 2 gives an example of why the maximum cut problem is non-monotone. If we start off by

selecting the set A = {v1, v2, v3, v4}, we get that f(A) = 2 because there are two edges going between

the sets A and V \A (highlighted in red in Figure 2a). On the other hand (as shown in Figure 2b),

if we add the last vertex v5 to our set, we get the set B = {v1, v2, v3, v4, v5} and f(B) = 0 because

4
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(b)

Figure 2: (a) and (b) demonstrate non-monotone submodularity because the set A = {v1, v2, v3, v4}
is less valuable than the set B = {v1, v2, v3, v4, v5}. Another way to look at this is that the marginal
gain of the vertex v5 to the set A is negative.

V \ B is the empty set and there cannot be any edges crossing into the empty set. In other words,

the marginal gain of the item v5 to the set A = {v1, v2, v3, v4} is negative and thus the function is

non-monotone.

In a related vein, a submodular function f is said to be non-negative if f(A) ≥ 0 for any set A.

Note that this is different from the concept of monotonicity. If a function is non-negative, there

might still be items that have a negative marginal gain, it’s just that the value of an entire set

cannot be negative. For example, the maximum cut problem is non-negative because you cannot

partition the vertices of a graph so that you have a negative number of edges going between the two

groups. The sensor placement example is also clearly non-negative because we cannot have a set

that covers a negative area.

2.3 Constraints on Submodular Functions

Another important piece of submodular optimization is the associated constraint. That is, if we are

trying to choose a set A to optimize a function f , what kind of restrictions do we have for the selected

set A? As a simple example, if f is monotone and we have no constraints on our set A, we could

simply just select all possible items A = V and trivially maximize f . As a result, the most common

(and probably simplest) constraint is the cardinality constraint. With the cardinality constraint,

we are simply limiting the size of the selected set A to some chosen k (i.e. |A| ≤ k).

Another relatively common constraint in the literature of submodularity is the matroid constraint

(Calinescu et al., 2011; Gharan and Vondrák, 2011). A matroid M on a ground set V can be

thought of as a family of subsets of V . If a set A ⊆ V is a part of this family of subsets, we say
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that it is independent and we write A ∈ M. Every matroid M must satisfy the following three

properties:

1. ∅ ∈ M. That is, the empty set is independent.

2. If B ∈ M and A ⊆ B, then A ∈ M. This is commonly known as the downward closed (or

hereditary) property because it essentially says that if a set B ⊆ V is independent, then all

subsets A ⊆ B are also independent.

3. If A,B ∈M and |A| ≤ |B|, then there exists an item v ∈ B \A such that A ∪ {v} ∈ M. This

is commonly known as the augmentation property because it essentially says that if we look at

two independent sets where one is larger than the other, then there is at least one item in the

larger set that can be added to the smaller set such that the smaller set remains independent.

To better understand these constraints, consider the problem of movie recommendation, which is

commonly modeled under some sort of framework involving diminishing returns. With a cardinality

constraint, we are simply limited to recommending a maximum of k movies. This is similar to how

Netflix, and most other recommender systems in the real world, will only show a certain number of

suggestions.

The cardinality constraint is technically a type of matroid constraint, but matroid constraints can be

much more general. One example of a matroid constraint in the context of movie recommendation

would be limiting the number of movies from certain genre. To further illustrate why this qualifies

as a matroid constraint, suppose we limit ourselves to recommending at most 4 drama movies and

at most 5 comedy movies. We will go through the matroid properties one by one:

1. Not recommending any movies (i.e. the empty set) would clearly satisfy this constraint.

2. If B ∈ M then there are at most 4 drama movies and at most 5 comedy movies in B.

Therefore, any subset A ⊆ B will also have at most 4 drama movies and 5 comedy movies and

thus A ∈M, satisfying the downward closed property.

3. For the augmentation property, we start off with sets A,B ∈ M and A ⊆ B and we want to

show that there exists a movie in B that can be added to A such that A is still an independent

set. Here we can consider two simple cases:

(a) If A has fewer comedy or drama movies than B, then we can simply choose one of the

comedy or drama movies v ∈ B and add them to A. Since B ∈ M and B had more

comedy or drama movies than A to start with, then A ∪ {v} will still be independent.
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(b) If A and B have the same number of comedy and drama movies, then that means B

has at least one movie v from an unrestricted genre, and thus A ∪ {v} will also remain

independent.

2.4 The Greedy Algorithm and Submodularity

2.4.1 Classical Greedy Algorithm

Algorithm 1 Greedy Algorithm

1: Input: Ground set of items V , submodular function f : 2V → R, cardinality constraint k
2: Output: Set S ⊆ V of size k
3: Initialize S = ∅
4: for i = 1, . . . , k do
5: vi = arg maxv f(v | S) . Find the item with the highest marginal gain
6: S = S ∪ {vi} . Add that item to S

7: Return S

The greedy algorithm (Algorithm 1) is an intuitive iterative algorithm that simply selects the best

option given the current information. In the context of discrete optimization (and submodularity

more specifically), this means that the greedy algorithm simply selects the item with the highest

marginal gain.

A seminal result in submodularity states that if our utility function f is non-negative, monotone and

submodular, then the classical greedy algorithm maximizes f subject to a cardinality constraint up

to an approximation ratio of 1−1/e (Nemhauser et al., 1978) (see Appendix A.1 for a proof).

In addition to this strong theoretical guarantee on the utility, the greedy algorithm is also desirable

for its computational efficiency. In particular, if we want to select k items out of a ground set of size

n, then the traditional greedy algorithm requires just O(nk) function evaluations, making it linear

in the size of the ground set.

2.4.2 Lazy Greedy Algorithm

One heuristic for improving the greedy algorithm is known as the lazy greedy algorithm (Minoux,

1978). This heuristic works by keeping an upper bound β(v) on the marginal gain of each item,

initialized to marginal gain of that item relative to the empty set, i.e. β(v) = f(v | ∅) = f(v).

At the beginning of each iteration of the lazy greedy algorithm, we have a list of all available items

sorted according to these upper bounds. We then take the item v1 with the current highest upper
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bound and update the upper bound to reflect the marginal gain relative to the current set of selected

items S. That is, we set β(v1) = f(v1 | S)

Notice that, due to submodularity, the marginal gain of any item cannot increase. Therefore, if the

updated upper bound of v1 is still larger than the upper bound of v2 (the next item in our sorted

list) then we certainly know that v1 will have the highest marginal gain and there is no reason to

evaluate f(vi | S) for all the other items. In case we find that β(v1) < β(v2) after the update, we

simply insert v1 into the proper spot to maintain the sorted order of our list and repeat the process

with v2 as our new highest upper bound.

The lazy greedy algorithm does not provide any theoretical improvements because in the worst case

it is perfectly possible that we need to update the upper bounds β(vi) for all items vi in every single

iteration. However, in practice we do not usually see these worst case-scenarios and the lazy greedy

algorithm has been shown to result in runtimes that are orders of magnitude faster than the classical

greedy algorithm.

2.4.3 Stochastic Greedy Algorithm

The stochastic greedy algorithm (Mirzasoleiman et al., 2015) combines the best of both worlds

and produces an improved greedy algorithm with both provable theoretical guarantees and strong

practical performance. The main idea of this approach is to use subsampling. That is, instead of

re-evaluating the marginal gain of all items in every iteration like the classical greedy algorithm

and (in the worst case) the lazy greedy algorithm, the stochastic greedy algorithm simply randomly

looks at s items in every iteration and selects the one that has the highest marginal gain.

Perhaps surprisingly, this algorithm guarantees a minimum utility that is independent of n (the total

size of the ground set) and k (the total number of items we are selecting) and instead depends only

on s (the number of items subsampled in each iteration). In particular, if we set s = n
k log 1

ε (where

ε is any arbitrarily small constant) then the solution output by the stochastic greedy algorithm is

guaranteed to be within a factor of (1 − 1
e − ε) of the true optimal solution, while requiring only

O(n log 1
ε ) function evaluations.

Compare this to the classical greedy algorithm, which guarantees that the output is within a factor

of (1 − 1
e ) of the true optimal solution, but it requires O(nk) function evaluations. It is clear that

by changing the value of ε (which is a free hyperparameter), one can trade-off algorithmic runtime

against utility guarantees.
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Other research on stochastic submodular maximization include works from Karimi et al. (2017),

Hassani et al. (2017), Mokhtari et al. (2018), and Hassidim and Singer (2017).

3. Submodularity and Differential Privacy

3.1 Introduction to Differentially Private Submodular Maximization

Many of the most compelling use cases of submodularity (such as data summarization, recommender

systems, and feature selection) commonly concern sensitive data about individuals. As a simple

running example, let us consider the specific problem of determining which of a massive number

of features (e.g. age, height, weight, etc.) are most relevant to a binary classification task (e.g.

predicting whether an individual is likely to have diabetes). In this problem, a sensitive training set

takes the form D = {(xi, yi)}ni=1 where each individual i’s data consists of a features xi,1, . . . , xi,m

together with a class label yi. The goal is to identify a small subset S ⊆ [m] of features which can

then be used to build a good classifier for y. Many techniques exist for feature selection, including

one based on maximizing a submodular function which captures the mutual information between

a subset of features and the class label of interest (Krause and Guestrin, 2005). However, for

both legal (e.g. compliance with HIPAA regulations) and ethical reasons, it is important that the

selection of relevant features does not compromise the privacy of any individual who has contributed

to the training data set. Unfortunately, the theory of submodular maximization does not in itself

accommodate such privacy concerns.

To this end, we propose a systematic study of differentially private submodular maximization to en-

able these applications based on submodular maximization, while provably guaranteeing individual-

level privacy. The definition of differential privacy Dwork et al. (2006), which emerged from the

theoretical computer science literature, offers a strong protection of individual-level privacy. Nev-

ertheless, differential privacy has been shown to permit useful data analysis and machine learning

tasks. In a nutshell, the definition formalizes a guarantee that no individual’s data should have

too significant an effect on the outcome of a computation. We provide the formal definition in

Section 3.4.

The problem of differentially private submodular maximization can be summarized as follows: Given

a sensitive dataset D associated to a submodular function fD : 2V → R: Find a subset S ∈ C ⊆ 2V

that approximately maximizes fD(S) in a manner that guarantees differential privacy with respect
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to the input dataset D. In this chapter, we study this problem under various conditions on the

submodular objective function f (monotone vs. non-monotone), and various choices of the constraint

C (cardinality, matroid, or p-system).

An important special case of this problem was studied in prior work of Gupta et al. (2010). They

considered the “combinatorial public projects” problem (Papadimitriou et al., 2008), where given

a dataset D = (x1, . . . , xn), the function fD takes the particular form fD(S) = 1
n

∑n
i=1 fxi(S) for

monotone submodular functions fxi : 2V → [0, 1], and is to be maximized subject to a cardinality

constraint |S| ≤ k. We call functions of this form decomposable. They presented a simple greedy

algorithm, which will be central to our work, together with a tailored analysis which achieves strong

accuracy guarantees in this special case.

However, there are many cases which do not fall into the combinatorial public projects framework.

For some problems, including feature selection via mutual information, the submodular function fD

of interest depends on the dataset D in ways much more complicated than averaging functions asso-

ciated to each individual. The focus of our work is to capture a broader class of useful applications

in machine learning. We summarize our specific contributions in Section 3.3.

3.2 The Greedy Paradigm

Even without concern for privacy, the problem of submodular maximization poses computational

challenges. In particular, exact submodular maximization subject to a cardinality constraint is

NP-hard. One of the principle approaches to designing efficient approximation algorithms is to use

a greedy strategy (Nemhauser et al., 1978). Consider the problem of maximizing a set function

f(S) subject to the cardinality constraint |S| ≤ k. In each of rounds i = 1, . . . , k, the basic

greedy algorithm constructs Si from Si−1 by adding the element vi ∈ (V \ Si−1) which maximizes

the marginal gain f(Si−1 ∪ {vi}) − f(Si−1). Nemhauser et al. (1978) famously showed that this

algorithm yields a (1− 1/e)-approximation to the optimal value of f(S) whenever f is a monotone

submodular function.

In the combinatorial public projects setting, Gupta et al. (2010) showed how to make the greedy

algorithm compatible with differential privacy by randomizing the procedure for selecting each vi.

This selection procedure is specified by the differentially private exponential mechanism of McSherry

and Talwar (2007), which (probabilistically) guarantees that the vi selected in each round is almost as

good as the true marginal gain maximizer. Remarkably, Gupta et al. (2010) show that the cumulative
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Cardinality Matroid p-System

Com. Pub. Pro.
(
1− 1

e

)
OPT −O

(
k log |V |

n

)
1
2
OPT −O

(
k log |V |

n

)
1

p+1
OPT −O

(
k log |V |

n

)
Monotone

(
1− 1

e

)
OPT −O

(
k3/2 log |V |

n

)
1
2
OPT −O

(
k3/2 log |V |

n

)
1

p+1
OPT −O

(
k3/2 log |V |

n

)
Non-monotone 1

e

(
1− 1

e

)
OPT −O

(
k3/2 log |V |

n

)
– –

Table 1: Guarantees of expected solution quality for privately maximizing a sensitivity-(1/n) sub-
modular function fD. The parameter k represents either a cardinality constraint, or the size of the
set returned (for matroid or p-system constraints). Full expressions with explicit dependencies on dif-
ferential privacy parameters ε, δ appear in this section. The cardinality result for the Combinatorial
Public Projects problem is due to Gupta et al. (2010), but the rest are our novel contributions.

privacy guarantee of the resulting randomized greedy algorithm is not much worse than that of a

single run of the exponential mechanism. This analysis is highly tailored to the structure of the

combinatorial public projects problem. However, it is not hard to see that by replacing this tailored

analysis with the more generic “advanced composition theorem” for differential privacy Dwork et al.

(2010), one still obtains useful results for the more general class of “low-sensitivity” submodular

functions.

3.3 Our Contributions

Table 1 summarizes the approximation guarantees we obtain under increasingly more general classes

of submodular functions fD (read top to bottom), and increasingly more general types of constraints

(read left to right). In each entry, OPT denotes the value of the optimal non-private solution. Below

we draw attention to a few particular contributions, including some that are not expressed in Table 1.

Non-monotone objective functions. Submodular maximization for non-monotone functions is

significantly more challenging than it is for monotone objectives. In particular, the basic greedy

algorithm of Nemahauser et al. fails dramatically, and cannot guarantee any constant-factor ap-

proximation. Several works (Buchbinder et al., 2014; Feldman et al., 2011) have identified variations

of the greedy algorithm that do yield constant-factor approximations for non-monotone objectives.

However, it is not clear how to modify any of these algorithms to accommodate differential pri-

vacy.

Our starting point is instead the “stochastic greedy” algorithm of Mirzasoleiman et al. (2015), which

was originally designed to perform monotone submodular maximization in nearly linear time. Draw-

ing ideas from Buchbinder et al. (2014), we give a new analysis of the stochastic greedy algorithm
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to show that it also gives a 1
e (1− 1/e)-approximation for non-monotone submodular functions. To

our knowledge, this is the first algorithm running in time exactly |V | which achieves any constant-

factor approximation for non-monotone objectives. Moreover, it is immediately clear how to use the

exponential mechanism to make this algorithm differentially private.

This phenomenon is quite analogous to how stochastic variants of gradient descent are more amenable

to providing differential privacy than their deterministic counterparts (Bassily et al., 2014). That

is, our results illustrate how techniques for making algorithms fast are also helpful in making them

privacy-preserving.

General constraints. While a cardinality constraint is perhaps the most natural to place on a

submodular maximization problem, some machine learning problems require the use of more general

types of constraints such as personalized data summarization Mirzasoleiman et al. (2016a). For

instance, one may wish to maximize a submodular function f(S) subject to S ∈ I for an arbitrary

matroid I, or subject to S being contained in an intersection of p matroids (more generally, a p-

extenible system). For these types of constraints, the greedy algorithm still yields a constant factor

approximation for monotone objective functions Fisher et al. (1978); Jenkyns (1976); Calinescu et al.

(2011). We show in this work that the analysis in Calinescu et al. (2011) for matroids and p-systems

can be adapted to handle additional error introduced for differential privacy.

General selection procedures. For worst-case datasets, the exponential mechanism is optimal

within each round of private maximization. However, it may be sub-optimal for datasets enjoying

additional structural properties. Fortunately, the greedy framework we use is flexible with regard

to the choice of the selection procedure. For instance, one can replace the exponential mechanism

in a black-box manner with the “large margin mechanism” of Chaudhuri et al. (2014) to obtain

error bounds that replace the explicit dependence on log |V | in Table 1 with a term that may be

significantly smaller for real datasets. To do so, we came up with a simplified version and tailored

analysis of large margin mechanism suitable for greedy algorithms that used the same data set

multiple times. For submodular functions exhibiting additional structure, one may also be able to

perform each maximization step with the “choosing mechanism” of Bun et al. (2015) and Beimel

et al. (2016).
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3.4 Differential Privacy Definitions

Let V be finite set which we will refer to as a “ground set,” and let X be a finite set which we

will refer to as a “data universe”. A dataset is an n-tuple D = (x1, . . . , xn) ∈ Xn. Suppose each

dataset D is associated to a set function fD : 2V → R. The manner in which fD depends on

D will be application-specific, but it is assumed that the association between D and fD is public

information.

We are interested in the problem of approximately maximizing a submodular function subject to

differential privacy. The definition of differential privacy relies on the notion of neighboring datasets,

which are simply tuples D,D′ ∈ Xn that differ in at most one entry. If D,D′ are neighboring, we

write D ∼ D′.

Definition 3.1. A randomized algorithm M : Xn → R satisfies (ε, δ)-differential privacy if for all

measurable sets T ⊆ R and all neighboring datasets D ∼ D′.

Pr[M(D) ∈ T ] ≤ eε Pr[M(D′) ∈ T ] + δ.

Differentially private algorithms must be calibrated to the sensitivity of the function of interest with

respect to small changes in the input dataset, defined formally as follows.

Definition 3.2. The sensitivity of a set function fD : 2V → R (depending on a dataset D) is

defined as

max
D∼D′

max
S⊆V
|fD(S)− fD′(S)|.

Composition of Differential Privacy. The analyses of our algorithms rely crucially on com-

position theorems for differential privacy. For a sequence of privacy parameters {(εi, δi)}ki=1, we

informally refer to the k-fold adaptive composition of (εi, δi)-differentially private algorithms as the

output of a mechanism M∗ that behaves as follows on an input D: In each of rounds i = 1, . . . , k,

the algorithm M∗ selects an (εi, δi)-differentially private algorithm Mi possibly depending on the

previous outcomes M1(D), . . . ,Mi(D) (but not directly on the sensitive dataset D itself), and re-

leases Mi(D). For a formal treatment of adaptive composition, see Dwork et al. (2010); Dwork and

Roth (2014).
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Theorem 3.1. (Dwork and Lei, 2009; Dwork et al., 2010; Bun and Steinke, 2016) The k-fold

adaptive composition of (ε0, δ0)-differentially private algorithms satisfies (ε, δ)-differential privacy

where

1. ε = kε0 and δ = kδ0. (Basic Composition).

2. ε = 1
2kε

2
0 +

√
2 log(1/δ′)ε0 and δ = δ′ + kδ, for any δ′ > 0. (Advanced Composition)

Exponential Mechanism. The exponential mechanism McSherry and Talwar (2007) is a general

purpose primitive for solving discrete optimization functions. Let q : V ×Xn → R be a “quality”

function measuring how good a solution v ∈ V is with respect to a dataset D ∈ Xn. We say a

quality function q has sensitivity λ if for all v ∈ V and all neighboring datasets D ∼ D′, we have

|q(v,D)− q(v,D′)| ≤ λ.

Proposition 3.2. McSherry and Talwar (2007) Let ε > 0 and let q : V ×Xn be a quality function

with sensitivity λ. Define the exponential mechanism as the algorithm which selects every v ∈ V

with probability proportional to exp(εq(v,D)/2λ).

• The exponential mechanism provides (ε, 0)-differential privacy.

• For every D ∈ Xn, let OPT = arg maxv∈V q(v,D). Then

E[q(v̂, D)] ≥ OPT−2λ · log |V |
ε

,

where v̂ is the output of the exponential mechanism on dataset D.

The privacy guarantee and a “with high probability” utility guarantee of the exponential mechanism

are due to McSherry and Talwar McSherry and Talwar (2007). A simple proof of the utility guarantee

in expectation appears in Bassily et al. (2016).

Large Margin Mechanism The accuracy guarantee of the exponential mechanism can be pes-

simistic on datasets where q(·, D) exhibits additional structure. For example, suppose that when the

elements of V are sorted so that q(v1, D) ≥ q(v2, D) ≥ · · · ≥ q(v|V |, D), there exists an ` such that

q(v1, D)� q(v`+1, D). Then only the top ` ground set items are relevant to the optimization prob-

lem, so running the exponential mechanism on these should maintain differential privacy, but with

error proportional to log ` rather than to log |V |. The large margin mechanism of Chaudhuri et al.

(2014), like the exponential mechanism, generically solves discrete optimization problems. However,
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it automatically leverages this additional margin structure whenever it exists. Asymptotically, the

error guarantee of the large margin mechanism is always at most that of the exponential mechanism,

but can be much smaller when the data exhibits a margin for small `. Further details about the

large margin mechanism are given in Appendix B.1.

3.5 Monotone Submodular Maximization with Differential Privacy

In this section, we present a variant of the basic greedy algorithm which will enable maximization

of monotone submodular functions. This algorithm simply replaces each greedy selection step with

a privacy-preserving selection algorithm denoted O. The selection function O takes as input a

quality function q : U × Xn → R and a dataset D, as well as privacy parameters ε0, δ0, and

outputs an element u ∈ U . We begin in the simplest case of monotone submodular maximization

with a cardinality constraint (Algorithm 2). The algorithm for more general constraints appears in

Section 3.5.1.

Algorithm 2 was already studied by Gupta et al. (2010) in the special case where fD is decomposable,

and O is the exponential mechanism. We generalize their result to the much broader class of low-

sensitivity monotone submodular functions.

Algorithm 2 Diff. Private Greedy (Cardinality) GO
Input: Submodular function fD : 2V → R, dataset D, cardinality constraint k, privacy parameters
ε0, δ0
Output: Size k subset of V

1. Initialize S0 = ∅
2. For i = 1, . . . , k:

• Define qi : (V \ Si−1)×Xn → R via qi(v, D̃) = fD̃(Si−1 ∪ {v})− fD̃(Si−1)
• Compute vi ←R O(qi, D; ε0, δ0)
• Update Si ← (Si−1 ∪ {vi})

3. Return Sk

Theorem 3.3. Suppose fD : 2V → R is monotone and has sensitivity λ. Then instantiating

Algorithm 2 with O = EM (the exponential mechanism) and parameter ε0 > 0 provides (ε =

kε0, δ = 0)-differential privacy. It also provides (ε, δ)-differential privacy for every δ > 0 with

ε = kε2
0/2 + ε0 ·

√
2k ln(1/δ).

Moreover, for every D ∈ Xn,

E [fD(Sk)] ≥
(

1− 1

e

)
OPT−2λk ln |V |

ε0

where Sk ←R GEM(D).
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See Appendix B.2.1 for a full proof.

3.5.1 Matroid and p-Extendible System Constraints

We now show how to extend Algorithm 2 to privately maximize monotone submodular functions

subject to more general constraints. To start, we review the definition of a p-extendible system.

Consider a ground set V and a non-empty downward-closed family of subsets I ⊆ 2V (i.e. if T ∈ I,

then S ∈ I for every S ⊆ T ). Such an I is called a family of independent sets. The pair (V, I) is said

to be a p-extendible system (Mestre, 2006) if for all S ⊂ T ∈ I, and v ∈ V such that S ∪ {v} ∈ I,

there exists a set Z ⊆ (T \ S) such that |Z| ≤ p and (T \ Z) ∪ {v} ∈ I. Let r(I) denote the size of

the largest independent set in I.

The definition of a matroid coincides with that of a 1-extendible system (with rank r(I)). For

p ≥ 2, the notion of a p-extendible system strictly generalizes that of an intersection of p ma-

troids. A slight modification of Algorithm 2 gives a unified algorithm for privately maximizing a

monotone submodular function subject to matroid and p-extendible system constraints, presented

as Algorithm 3.

We obtain analogues of the algorithms and results presented for the cardinality constraints. For

submodular functions with p-extentible system constraints, our algorithm will be similar to the pre-

vious algorithms where, in each iteration, we greedily add an element using some privacy-preserving

selection mechanism. However, instead of running for a set number of iterations k, we will run until

our set Si is maximal (i.e. we cannot add another element without breaking the p-extendible system

constraint) and we use k to denote the size of the set when the algorithm terminates.

Algorithm 3 Differentially Private Greedy (p-system) GO
Input: Submodular function fD : 2V → R, dataset D, p-extendible family (V, I), privacy parame-
ters ε0, δ0
Output: Maximal independent subset of V

1. Initialize S = ∅
2. While S ∈ I is not maximal:

• Define q : (V \ S)×Xn → R via q(v, D̃) = fD̃(S ∪ {v})− fD̃(S)
• Compute vi ←R O(q,D; ε0, δ0)
• Update S ← (S ∪ {vi})

3. Return S

Theorem 3.4. Suppose fD : 2V → R has sensitivity λ. Then instantiating Algorithm 3 with

O = EM and parameter ε0 > 0 provides (ε = r(I)ε0, δ = 0)-differential privacy. It also provides

16



(ε, δ)-differential privacy for every δ > 0 with ε = r(I)ε2/2 + ε ·
√

2r(I) ln(1/δ).

Moreover, for every D ∈ Xn,

E [fD(S)] ≥ 1

p+ 1
·OPT− p

p+ 1

(
2λr(I) ln |V |

ε0

)

where S ←R GEM(D).

Please see Appendix B.2.2 for a full proof.

3.6 Non-Monotone Submodular Maximization with Differential Privacy

We now consider the problem of privately maximizing an arbitrary, possibly non-monotone, sub-

modular function under a cardinality constraint. In general, the greedy algorithm presented in

Section 3.5 fails to give any constant-factor approximation. Instead, our algorithm in this section

will be based on the “stochastic greedy” algorithm first studied by Mirzasoleiman et al. (2015). In

each round, the stochastic greedy algorithm first subsamples a random 1
k · ln(1/α) fraction of the

ground set for some α > 0, and then greedily selects the item from this subsample that maximizes

marginal gain. Mirzasoleiman et al. (2015) showed that for a monotone objective function f , this

algorithm provides a (1−1/e−α)-approximation to the optimal solution. Their original motivation

was to improve the running time of the greedy algorithm: from O(|V | ·k) evaluations of the objective

function to linear O(|V | · ln(1/α)).

Unfortunately, the stochastic greedy algorithm does not provide any approximation guarantee for

non-monotone submodular functions. Buchbinder et al. (2014) instead proposed a “random greedy”

algorithm that, in each iteration, randomly selects one of the k elements with the highest marginal

gain. Buchbinder et al. (2014) showed that the random greedy algorithm achieves a 1/e approxi-

mation to the optimal solution (in expectation), using k|V | function evaluations. However, it is not

clear how to adapt this algorithm to accommodate differential privacy, since its analysis has a brittle

dependence on the sampling procedure.

We make two main contributions to the analysis of the stochastic greedy and random greedy algo-

rithms. First, we show that running the stochastic greedy algorithm on an exact 1
k fraction of the

ground set per iteration still gives a (0.468)-approximation for monotone objectives, and moreover,

gives a 1
e (1−1/e)-approximation even for non-monotone objectives. Note that this algorithm evalu-

ates the objective function on only |V | elements, and still provides a constant factor approximation
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guarantee. This makes our “subsample-greedy” algorithm the fastest algorithm for maximizing a

general submodular function subject to a cardinality constraint (albeit with slightly worse approx-

imation guarantees). Second, we show that the guarantees of this algorithm are robust to using a

randomized greedy selection procedure (e.g. the exponential or large margin mechanism), and hence

it can be adapted to ensure differential privacy.

We present the subsample-greedy algorithm as Algorithm 4 below. Assume that V is augmented by

enough “dummy elements” to ensure that |V |/k is an integer; each dummy element u is defined so

that fD(S ∪ {u}) = fD(S) for every set S. We also explicitly account for an additional set U of k

dummy elements, and ensure that at least one appears in every subsample.

Algorithm 4 Diff. Private “Subsample-Greedy” SGO
Input: Submodular function fD : 2V → R, dataset D, cardinality constraint k, privacy parameters
ε0, δ0
Output: Size k subset of V

1. Initialize S0 = ∅, dummy elements U = {u1, . . . , uk}
2. For i = 1, . . . , k:

• Sample Vi ⊂ V a uniformly random subset of size |V |/k and ui a random dummy element
• Define qi : (Vi ∪ {ui})×Xn → R via qi(v, D̃) = fD̃(Si−1 ∪ {v})− fD̃(Si−1)
• Compute vi ←R O(qi, D; ε0, δ0)
• Update Si ← (Si−1 ∪ {vi})

3. Return Sk with all dummy elements removed

Theorem 3.5. Suppose fD : 2V → R has sensitivity λ. Then instantiating Algorithm 4 with

O = EM provides (ε, δ)-differential privacy, and for every D ∈ Xn,

E [fD(S)] ≥ 1

e

(
1− 1

e

)
OPT−2λk ln |V |

ε

where S ←R SGEM(D). Moreover, if fD is monotone, then

E [fD(S)] ≥
(

1− e−(1−1/e)
)

OPT−2λk ln |V |
ε

≈ 0.468 OPT−2λk ln |V |
ε

.

Please see Appendix B.2.3 for a full proof of Theorem 3.5.

The guarantees of Theorem 3.5 are of interest even without privacy. Letting MAX denote the selec-

tion procedure which simply outputs the true maximizer (equivalently, which runs the exponential

mechanism with ε0 = +∞), we obtain the following non-private algorithm for maximizing a sub-

modular function fD:
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Corollary 3.6. Let fD : 2V → R be any submodular function. Instantiating Algorithm 4 with

O = MAX gives

E [fD(S)] ≥ 1

e

(
1− 1

e

)
OPT

where S ←R SGMAX(D). Moreover, if fD is monotone, then

E [fD(S)] ≥
(

1− e−(1−1/e)
)

OPT ≈ 0.468 OPT .

3.7 Applications of Submodular Maximization with Differential Privacy

In this section we describe two concrete applications of our mechanisms.

3.7.1 Location Privacy

We analyze a dataset of 10,000 Uber pickups in Manhattan in April 2014 (UberDataset). Each

individual entry in the dataset consists of the longitude and latitude coordinates of the pickup

location. We want to use this dataset to select k public locations as waiting spots for idle Uber

drivers, while also guaranteeing differential privacy for the passengers whose locations appear in this

dataset.1 We consider two different public sets of locations L:

• LPopular is a set of 33 popular locations in Manhattan.

• LGrid is a set of 33 locations spread evenly across Manhattan in a grid-like manner.

We define a utility function M(i, j) to be the normalized Manhattan distance between a pickup lo-

cation i and the waiting location j. That is, if pickup location i is located at coordinates (i1, i2) and

the waiting location j is located at coordinates (j1, j2), then M(i, j) =
|i1 − j1|+ |i2 − j2|

m
, where

m = 0.266 is simply the Manhattan distance between the two furthest spread apart points in Man-

hattan. This normalization ensures that 0 ≤M(i, j) ≤ 1, for all i, j. In order to make sure we have

a maximization problem, we define the following objective function: fD(S) = n −
∑
i∈D

min
j∈S

M(i, j),

where n = |D| = 10000.

Observation 3.7. The function fD is λ-decomposable for λ = 1 (and hence has sensitivity 1).

1. Under the assumption that each pickup corresponds to a unique individual.
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(a) LPopular (b) LGrid (c) LPopular (d) LGrid

(e) LPopular: Non-private
greedy

(f) LPopular: EM-based greedy (g) LGrid: Non-
private greedy

(h) LGrid: EM-
based greedy

Figure 3: (a) and (b) show utility for various cardinalities (k). (c) and (d) fix k = 3 and show utility
for various privacy parameters (ε). Utility is normalized to be between 0 and 1. (e) - (h) shows a
representative top 3 set under various settings.

This form of objective function is known to be monotone submodular and so we can use the greedy

algorithms studied in this section. We use ε = 0.1 and δ = 2−20. For our settings of parameters,

“basic composition” outperforms “advanced composition,” so the privacy budget of ε = 0.1 is split

equally across the k iterations, meaning the mechanism at each iteration uses ε0 = ε
k . Our figures

plot the average utility across 100 simulations.

From Figures 3(a) and (b) we see that the results for both LPopular and LGrid are relatively sim-

ilar and unsurprising. The non-private greedy algorithm achieves the highest utility, but both the

exponential mechanism (EM)-based greedy and large margin mechanism (LMM)-based greedy algo-

rithms exhibit comparable utility while preserving a high level of privacy. Interestingly, we also see

that the utilities of the EM-based and LMM-based algorithms are almost identical for both LPopular

and LGrid. This indicates that our mechanisms are actually selecting good locations, rather than

just getting lucky because there are a lot of good locations to choose from.

Figures 3(c) and (d) show how the utility of the EM-based and LMM-based algorithms vary with

the privacy parameter ε. We can also think of this as varying the dataset size for a fixed ε. We fix

k = 3 and take the average of 100 simulations for each value of ε. We see that even for very small
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ε, our algorithms outperform fully random selection. As ε increases, so does the utility. It is not

shown in this figure, but varying δ has very little effect.

From Figures 3(e) - (h), we see that the both the non-private and private algorithms select public

locations that are relatively close to each other. For example, for the LPopular set of locations, the

Empire State Building is close to the New York Public Library, the Soho Grand Hotel is close to NYU,

and the Grand Army Plaza is close to the UN Headquarters. As a result, the private mechanisms

manage to achieve comparable utility, while also masking the users’ exact locations.

The theory suggests that, at least asymptotically, the large margin mechanism-based algorithm

should outperform the exponential mechanism-based algorithm. However, in our experiments, we

find that the large margin mechanism is generally only able to find a margin in the first iteration

of the greedy algorithm. This is because the threshold for finding a margin depends only on ε, δ,

and n and thus it stays the same across all k iterations. On the other hand, the marginal gain

at each iteration drops very quickly, so the mechanism fails to find a margin and thus samples

from all remaining locations. However, since the large margin mechanism spends half of its privacy

budget to try to find a margin, the sampling step gives slightly worse guarantees than does the plain

exponential mechanism, thus giving us the slightly weaker results we see in the figures.

3.7.2 Feature Selection Privacy

We analyze a dataset created from a combination of National Health Examination Surveys ranging

from 2007 to 2014 (NHANESDataset). There are n = 23, 876 individuals in the dataset with

information on whether or not they have diabetes, along with m = 23 other potentially related

binary health features. Our goal is to privately select k of these features that provide as much

information about the diabetes class variable as possible.

More specifically, our goal is to maximize the mutual information between Y and XS , where Y

is a binary random variable indicating whether or not an individual has diabetes and XS is a

random variable that represents a set S of k binary health features. Mutual information takes the

form:

I(Y ;X) =
∑
y∈Y

∑
x∈X

p(x, y) log2

(
p(x, y)

p(x)p(y)

)
.

Under the Naive Bayes assumption, we suppose the joint distribution on (Y,X1, . . . , Xk) takes the
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(a) Graphical model of Naive
Bayes

(b) Expected mutual information

Insulin
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(c) Representative top 3 features

Figure 4: Privately selecting health features, from national health examination surveys, that corre-
late most with diabetes.

form p(y, x1, . . . , xk) = p(y)
k∏
i=1

p(xi | y). Therefore, we can easily specify the entire probability

distribution by finding each p(xi | y). We estimate each p(xi | y) by counting frequencies in the

dataset.

Our goal is to choose a size k subset S of the features in order to maximize fD(S) = I(Y ;XS).

Mutual information (under the Naive Bayes assumption) for feature selection is known to be mono-

tone submodular in S (Krause and Guestrin, 2005), and thus we can apply the greedy algorithms

described in this section.

Claim 3.8. In iteration i of the greedy algorithm, the sensitivity of fD(S) is (2i+1) log2(n)
n .

We run 1,000 simulations with ε = 1.0 and δ = 2−20. As we can see from Figure 4(b), our private

mechanisms maintain a comparable utility relative to the non-private algorithm. We also observe

an interesting phenomenon where the expected utility obtained by our mechanism is not necessarily

monotonically increasing with the number of features selected. This is an artifact of the fact that

if we are selecting k features, then composition requires us to divide ε so that each iteration uses

privacy budget ε
k . This is problematic for this particular application because there happens to be one

feature (insulin administration) that has much higher value than the rest. Therefore, the reduced

probability of picking this single best feature (as a result of the lower privacy parameter ε
k ) is not

compensated for by selecting more features.

From Figure 4(c), we see that both the private and non-private mechanisms generally select insulin

administration as the top feature. However, while all three of the top features selected by the

22



non-private algorithm are clearly related to diabetes, the non-private mechanisms tend to select

one feature (in our case, gender or having received a blood transfusion) that may not be quite as

relevant.

3.8 Conclusion

We have presented a general framework for maximizing submodular functions while guaranteeing

differential privacy. Our results demonstrate that simple and flexible greedy algorithms can preserve

privacy while achieving competitive guarantees for a variety of submodular maximization problems:

for all functions under cardinality constraints, as well as for monotone functions under matroid and

p-extendible system constraints. Via our motivation to identify algorithms that could be made dif-

ferentially private, we discovered a non-monotone submodular maximization algorithm that achieves

guarantees that are novel even without concern for privacy. Finally, our experiments show thatour

algorithms are indeed competitive with their non-private counterparts.

4. Scalable Submodularity

As mentioned earlier, one of the primary reasons that submodularity has been of interest to the

broader machine learning community is that it allows for provably efficient optimization. Indeed, as

we have seen in previous sections, there are many greedy-based linear-time algorithms. However, as

the world continues to produce more and more data, even linear-time algorithms are becoming too

slow. In this section, we will push the boundaries of scalable submodularity and show how we can

leverage the mathematical notion of diminishing returns to break past the linear-time barrier.

This section will focus on two primary directions. First, we will look at the idea of two-stage sub-

modularity, where the goal is to use some given training functions to reduce the ground set so that

optimizing new functions (drawn from the same distribution) over the reduced set provides almost as

much value as optimizing them over the entire ground set. In particular, we will explore streaming

and distributed extentesions to existing algorithms for two-stage submodular maximization.

The second section will focus more closely on streaming submodularity. In a nutshell, we present

a novel streaming algorithm that achieves optimal bounds both for the approximation guarantee

as well as the space complexity. Furthermore, we also present a streaming algorithm with low

adaptive complexity (both for the single and multi-stream settings) that can take advantage of

parallel computation and thus scale to even larger amounts of data.
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4.1 Data Summarization At Scale: A Two-Stage Submodular Approach

4.1.1 Introduction To Two-Stage Submodular Maximization

In the context of machine learning, it is not uncommon to have to repeatedly optimize a set of

functions that are fundamentally related to each other. We have already seen that submodular

functions can be approximately optimized in linear time. However, modern datasets are growing

so large that even linear time solutions can be computationally expensive. Ideally, we want to

find a sublinear summary of the given dataset so that optimizing these related functions over this

reduced subset is nearly as effective, but not nearly as expensive, as optimizing them over the full

dataset.

As a concrete example, suppose Uber is trying to give their drivers suggested waiting locations

across New York City based on historical rider pick-ups. Even if they discretize the potential waiting

locations to just include points at which pick-ups have occurred in the past, there are still hundreds

of thousands, if not millions, of locations to consider. If they wish to update these ideal waiting

locations every day (or at any routine interval), it would be invaluable to be able to drastically reduce

the number of locations that need to be evaluated, and still achieve nearly optimal results.

In this scenario, each day would have a different function that quantifies the value of a set of locations

for that particular day. For example, in the winter months, spots near ice skating rinks would be

highly valuable, while in the summer months, waterfront venues might be more prominent. On the

other hand, major tourist destinations like Times Square will probably be busy year-round.

In other words, although the most popular pick-up locations undoubtedly vary over time, there is

also some underlying distribution of the user behavior that remains relatively constant and ties the

various days together. This means that even though the functions for future days are technically

unknown, if we can select a good reduced subset of candidate locations based on the functions

derived from historical data, then this same reduced subset should perform well on future functions

that we cannot explicitly see yet.

In more mathematical terms, consider some unknown distribution of functions D and a ground set

Ω of n elements to pick from. We want to select a subset S of ` elements (with ` � n) such that

optimizing functions (drawn from this distribution D) over the reduced subset S is comparable to

optimizing them over the entire ground set Ω.
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Algorithm Approx. Time Complexity Setup

LocalSearch (Balkanski et al., 2016) 1/2(1− 1/e) O(km`n2 log n) Centralized
Replacement-Greedy (Stan et al., 2017) 1/2(1− 1/e2) O(km`n) Centralized

Replacement-Streaming (ours) 1/7 O(kmn log `) Streaming
Replacement-Distributed (R) (ours) 1/4(1− 1/e2) O(km`n/M + Mkm`2) Distributed
Distributed-Fast (R) (ours) 0.107 O(kmn log /̀M + Mkm`2 log `) Distributed

Table 2: Comparison of algorithms for two-stage monotone submodular maximization. Bounds that
hold in expectation are marked (R). For distributed algorithms, we report the time complexity of
each single machine, where M represent the number of machines.

This problem was first introduced by Balkanski et al. (2016) as two-stage submodular maximiza-

tion. This name comes from the idea that the overall framework can be viewed as two separate

stages. First, we want to use the given functions to select a representative subset S, that is ideally

sublinear in size of the entire ground set Ω. In the second stage, for any functions drawn from this

same distribution, we can optimize over S, which will be much faster than optimizing over Ω.

Our Contributions. In today’s era of massive data, an algorithm is rarely practical if it is not

scalable. We build on existing work to provide solutions for two-stage submodular maximization

in both the streaming and distributed settings. Table 2 summarizes the theoretical results and

compares them with the previous state of the art. All proofs are given in Appendix C.

4.1.2 Related Work

Data summarization is one of the most natural applications that falls under the umbrella of sub-

modularity. As such, there are many existing works applying submodular theory to a variety of

important summarization settings. For example, Mirzasoleiman et al. (2013) used an exemplar-

based clustering approach to select representative images from the Tiny Images dataset (Torralba

et al., 2008). Kirchhoff and Bilmes (2014) and Feldman et al. (2018) also worked on submodular

image summarization, while Lin and Bilmes (2011) and Wei et al. (2013) focused on document

summarization.

There have also been many successful efforts in scalable submodular optimization. For our dis-

tributed implementation we will primarily build on the framework developed by Barbosa et al.

(2015). Other similar algorithms include works by Mirzasoleiman et al. (2013) and Mirrokni and

Zadimoghaddam (2015), as well as Kumar et al. (2013). Balkanski and Singer (2018), Liu and

Vondrák (2018), and Kazemi et al. (2020) also wrote papers broadly related to distributed submod-

ular optimization.
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In terms of the streaming setting, there are two existing works we will focus on: Badanidiyuru et al.

(2014) and Buchbinder et al. (2015). The key difference between the two is that Badanidiyuru et al.

(2014) relies on thresholding and will terminate as soon as k elements are selected from the stream,

while Buchbinder et al. (2015) will continue through the end of the stream, swapping elements in

and out. Haba et al. (2020) extend the streaming framework for submodular maximization beyond

monotone functions and cardinality constraints.

Repeated optimization of related submodular functions has been a well-studied problem with works

on structured prediction (Lin and Bilmes, 2012), submodular bandits (Yue and Guestrin, 2011; Chen

et al., 2017), and online submodular optimization (Jegelka and Bilmes, 2011). However, unlike

our work, these approaches are not concerned with data summarization as a key pre-processing

step.

The problem of two-stage submodular maximization was first introduced by Balkanski et al. (2016).

They present two algorithms with strong approximation guarantees, but both runtimes are pro-

hibitively expensive. Recently, Stan et al. (2017) presented a new algorithm known as Replacement-

Greedy that improved the approximation guarantee from 1
2 (1− 1

e ) to 1
2 (1− 1

e2 ) and the run time

from O(km`n2 log(n)) to O(km`n). They also show that, under mild conditions over the func-

tions, maximizing over the sublinear summary can be arbitrarily close to maximizing over the entire

ground set. In a nutshell, their method indirectly constructs the summary S by greedily building

up solutions Ti for each given function fi simultaneously over ` rounds.

Although Balkanski et al. (2016) and Stan et al. (2017) presented centralized algorithms with con-

stant factor approximation guarantees, there is a dire need for scalable solutions in order for the

algorithm to be practically useful. In particular, the primary purpose of two-stage submodular max-

imization is to tackle problems where the dataset is too large to be repeatedly optimized by simple

greedy-based approaches. As a result, in many cases, the datasets can be so large that existing

algorithms cannot even be run once. The greedy approach requires that the entire data must fit into

main memory, which may not be possible, thus requiring a streaming-based solution. Furthermore,

even if we have enough memory, the problem may simply be so large that it requires a distributed

approach in order to run in any reasonable amount of time.
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Set Cardinality Description

F m Set of functions (f1, . . . , fm) drawn from an unknown distribution D
of monotone submodular functions.

Ω n Given ground set of all elements. Generally so large that even
greedy is too expensive.

Sm,` ` Optimal solution to Problem 2,
i.e. Sm,` = arg maxS⊆Ω,|S|≤`

1
m

∑m
i=1 max|T |≤k,T⊆S fi(T ).

Sm,`i k Optimal solution to each function fi from set Sm,`,

i.e. Sm,`i = arg maxS⊆Sm,`,|S|≤k fi(S).

OPT 1 The value of the optimal solution to Problem 2,

i.e. OPT = 1
m

∑m
i=1 fi(S

m,`
i ).

S ` Reduced subset of elements we want to select. Ideally sublinear in n,
but still representative.

Ti k Solution we select for each function fi (chosen from S), i.e., Ti ⊂ S.

Table 3: Summary of important terminology

4.1.3 Problem Definition

Consider some unknown distribution D of monotone submodular functions and a ground set Ω of n

elements to choose from. We want to select a set S of at most ` items that maximizes the following

function:

G(S) = Ef∼D[ max
T⊆S,|T |≤k

f(T )]. (1)

That is, the set S we choose should be optimal in expectation over all functions in this distribution

D. However, in general, the distribution D is unknown and we only have access to a small set of

functions F = (f1, . . . , fm) drawn from D. Therefore, the best approximation we have is to optimize

the following related function:

Gm(S) =
1

m

m∑
i=1

max
T∗i ⊆S,|T∗i |≤k

fi(T
∗
i ). (2)

Stan et al. (2017, Theorem 1) shows that with enough sample functions, Gm(S) becomes an arbi-

trarily good approximation to G(S).

To be clear, each T ∗i ⊂ S is the corresponding size k optimal solution for fi. However, in gen-

eral we cannot find the true optimal T ∗i , so throughout this section we will use Ti to denote the

approximately-optimal size k solution we select for each fi. Table 3 summarizes the important

terminology and can be used as a reference, if needed.
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It is very important to note that although each function fi is monotone submodular, G(S) is not

submodular (Balkanski et al., 2016), and thus using the regular greedy algorithm to directly build

up S will give no theoretical guarantees. We also note that although G(S) is an instance of an XOS

function (Feige, 2009), existing methods that use the XOS property would require an exponential

number of evaluations in this scenario (Stan et al., 2017).

4.1.4 Streaming Algorithm for Two-Stage Submodular Maximization

In many applications, the data naturally arrives in a streaming fashion. This may be because the

data is too large to fit in memory, or simply because the data is arriving faster than we can store it.

Therefore, in the streaming setting we are shown one element at a time and we must immediately

decide whether or not to keep this element. There is a limited number of elements we can hold at

any one time and once an element is rejected it cannot be brought back.

There are two general approaches for submodular maximization (under the cardinality constraint k)

in the streaming setting: (i) Badanidiyuru et al. (2014) introduced a thresholding-based framework

where each element from the stream is added only if its marginal value is at least 1
2k of the optimum

value. The optimum is usually not known a priori, but they showed that with only a logarithmic

increase in memory requirement, it is possible to efficiently guess the optimum value. (ii) Buchbinder

et al. (2015) introduced streaming submodular maximization with preemption. At each step, they

keep a solution A of size k with value f(A). Each incoming element is added if and only if it can be

exchanged with a current element of A for a net gain of at least f(A)
k . In this section, we combine

these two approaches in a novel and non trivial way in order to design a streaming algorithm (called

Replacement-Streaming) for the two-stage submodular maximization problem.

The goal of Replacement-Streaming is to pick a set S of at most ` elements from the data

stream, where we keep sets Ti ⊆ S, 1 ≤ i ≤ m as the solutions for functions fi. We continue to

process elements until one of the two following conditions holds: (i) ` elements are chosen, or (ii) the

data stream ends. This algorithm starts from empty sets S and {Ti}. For every incoming element

ut, we use the subroutine Exchange to determine whether we should keep that element or not. To

formally describe Exchange, we first need to define a few notations.

We define the marginal gain of adding an element x to a set A as follows: fi(x|A) = fi(x+A)−fi(A).

For an element x and set A, Repi(x,A) is an element of A such that removing it from A and replacing

it with x results in the largest gain for function fi, i.e.,
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Algorithm 5 Exchange

1: Input: u, S, {Ti}, τ and α . ∇i terms use α
2: if |S| < ` then
3: if 1

m

∑m
i=1∇i(u, Ti) ≥ τ then

4: S ← S + u
5: for 1 ≤ i ≤ m do
6: if ∇i(u, Ti) > 0 then
7: if |Ti| < k then
8: Ti ← Ti + u
9: else

10: Ti ← Ti + u−Rep(u, Ti)

Repi(x,A) = arg max
y∈A

fi(A+ x− y)− fi(A). (3)

The value of this largest gain is represented by

∆i(x,A) = fi(A+ x−Repi(x,A))− fi(A). (4)

We define the gain of an element x with respect to a set A as follows:

∇i(x,A) =

 1{fi(x|A)≥(α/k)·fi(A)}fi(x|A) if |A| < k,

1{∆i(x,A)≥(α/k)·fi(A)}∆i(x,A) o.w.,

where 1 is the indicator function. That is, ∇i(x,A) tells us how much we can increase the value of

fi(A) by either adding x to A (if |A| < k) or optimally swapping it in (if |A| = k). However, if this

potential increase is less than α
k · fi(A), then ∇i(x,A) = 0. In other words, if the gain of an element

does not pass a threshold of α
k · fi(A), we consider its contribution to be 0.

An incoming element is picked if the average of the ∇i terms is larger than or equal to a threshold τ .

Indeed, for ut, the Exchange routine computes the average gain 1
m

∑m
i=1∇i(ut, Ti). If this average

gain is at least τ , then ut is added to S; ut is also added to all sets Ti with ∇i(ut, Ti) > 0. Algorithm

5 explains Exchange in detail.

Now we define the optimum solution to Problem 2 by

Sm,` = arg max
S⊆Ω,|S|≤`

1

m

m∑
i=1

max
|T |≤k,T⊆S

fi(T ),

where the optimum solution to each function is defined by
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Algorithm 6 Replacement-Streaming-Know-Opt

1: Input: OPT, α and β
2: Output: Sets S and {Ti}1≤i≤m, where Ti ⊂ S
3: S ← ∅ and
4: Ti ← ∅ for all 1 ≤ i ≤ m
5: for every arriving element ut do
6: Exchange(ut, S, {Ti}, OPT

β` , α)

7: Return: S and {Ti}1≤i≤m

Sm,`i = arg max
S⊆Sm,`,|S|≤k

fi(S).

We define OPT = 1
m

∑m
i=1 fi(S

m,`
i ).

In Section 4.1.5, we assume that the value of OPT is known a priori. This allows us to de-

sign Replacement-Streaming-Know-Opt, which has a constant factor approximation guaran-

tee. Furthermore, in Section 4.1.6, we show how we can efficiently guess the value of OPT by a

moderate increase in the memory requirement. This enables us to finally explain Replacement-

Streaming.

4.1.5 Knowing OPT

If OPT is somehow known a priori, we can use Replacement-Streaming-Know-Opt. As shown

in Section 6, we begin with empty sets S and {Ti}. For each incoming element ut, it uses Exchange

to update sets S and {Ti}. The threshold parameter τ in Exchange is set to OPT
β` for a constant

value of β. This threshold guarantees that if an element is added to S, then the average of functions

fi over Ti’s is increased by a value of at least OPT
β` . Therefore, if we end up with ` elements in S,

we guarantee that 1
m

∑m
i=1 fi(Ti) ≥ OPT

β . On the other hand, if |S| < `, we are still able to prove

that our algorithm has picked good enough elements such that 1
m

∑m
i=1 fi(Ti) ≥

α·(β−1)·OPT
β·((α+1)2+α) . The

pseudocode of Replacement-Streaming-Know-Opt is provided in Algorithm 6.

Theorem 4.1. The approximation factor of Replacement-Streaming-Know-Opt is at least

min{ α(β−1)
β·((α+1)2+α) ,

1
β }. Hence, for α = 1 and β = 6 the competitive ratio is at least 1/6.
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4.1.6 Guessing OPT in the Streaming Setting

In this section, we discuss ideas on how to efficiently guess the value of OPT, which is generally not

known a priori. First consider Lemma 4.2, which provides bounds on OPT.

Lemma 4.2. Assume δ = 1
m maxu∈Ω

∑m
i=1 fi(u). Then we have δ ≤ OPT ≤ ` · δ.

Now consider the following set:

Γ = {(1 + ε)l | l ∈ Z,
δ

1 + ε
≤ (1 + ε)l ≤ ` · δ}

We define τl = (1 + ε)l. From Lemma 4.2, we know that one of the τl ∈ Γ is a good estimate of

OPT. More formally, there exists a τl ∈ Γ such that OPT
1+ε ≤ τl ≤ OPT. For this reason, we should

run parallel instances of Algorithm 6, one for each τl ∈ Γ. The number of such thresholds is O( log `
ε ).

The final answer is the best solution obtained among all the instances.

Note that we do not know the value of δ in advance. So we would need to make one pass over the

data to learn δ, which is not possible in the streaming setting. The question is, can we get a good

enough estimate of δ within a single pass over the data? Let’s define δt = 1
m maxut′ ,t′≤t

∑m
i=1 fi(u

t′)

as our current guess for the maximum value of δ. Unfortunately, getting δt as an estimate of δ

does not resolve the problem. This is due to the fact that a newly instantiated threshold τ could

potentially have already seen elements with additive value of τ/(β`). For this reason, we instantiate

thresholds for an increased range of δt/(1 + ε) ≤ τl ≤ ` · β · δt. To show that this new range would

solve the problem, first consider the next lemma.

Lemma 4.3. For the maximum gain of an incoming element ut, we have 1
m

∑m
i=1∇i(ut, T t−1

i ) ≤ δt.

We need to show that for a newly instantiated threshold τ at time t + 1, the gain of all elements

which arrived before time t + 1 is less than τ ; therefore this new instance of the algorithm would

not have picked them if it was instantiated from the beginning. To prove this, note that since τ

is a new threshold at time t + 1, we have τ > `·β·δt
β·` = δt. From Lemma 4.3 we conclude that the

marginal gain of all the ut
′
, t′ ≤ t is less than τ and Exchange would not have picked them. The

Replacement-Streaming algorithm is shown pictorially in Figure 5 and the pseudocode is given

in Algorithm 7.
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Algorithm 7 Replacement-Streaming

1: Γ0 = {(1 + ε)l|l ∈ Z}
2: For each τ ∈ Γ0 set Sτ ← ∅ and Tτ,i ← ∅ for all 1 ≤ i ≤ m . Maintain the sets lazily
3: δ0 ← 0
4: for every arriving element ut do
5: δt = max{δt−1, 1

m

∑m
i=1 fi(u

t)}
6: Γt = {(1 + ε)l | l ∈ Z, δt

(1+ε)·β·` ≤ (1 + ε)l ≤ δt}
7: Delete all Sτ and Tτ,i such that τ /∈ Γt

8: for all τ ∈ Γt do
9: Exchange(ut, Sτ , {Tτ,i}1≤i≤m, τ, α)

10: Return: arg maxτ∈Γn{ 1
m

∑m
i=1 fi(Tτ,i)}

Figure 5: Illustration of Replacement-Streaming. Stream of data arrives at any arbitrary order.
At each step t, the set of thresholds Γt is updated based on a new estimation of δt. Note that at
each time the number of such thresholds is bounded. For each τ ∈ Γt there is a running instance of
the streaming algorithm.

Theorem 4.4. Algorithm 7 satisfies the following properties:

• It outputs sets S and {Ti} ⊂ S for 1 ≤ i ≤ m, such that |S| ≤ `, |Ti| ≤ k and 1
m

∑m
i=1 fi(Ti) ≥

min{ α(β−1)
β((α+1)2+α) ,

1
β(1+ε)} ·OPT.

• For α = 1 and β = 6+ε
1+ε the approximation factor is at least 1

6+ε . For ε = 1.0 the approximation

factor is 1/7.

• It makes one pass over the dataset and stores at most O( ` log `
ε ) elements. The update time per

each element is O(km log `
ε ).

4.1.7 Distributed Algorithm for Two-Stage Submodular Maximization

In recent years, there have been several successful approaches to the problem of distributed submod-

ular maximization (Kumar et al., 2013; Mirzasoleiman et al., 2013; Mirrokni and Zadimoghaddam,

2015; Barbosa et al., 2015). Specifically, Barbosa et al. (2015) proved that the following simple
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Algorithm 8 Replacement-Distributed

1: for e ∈ Ω do
2: Assign e to a machine chosen uniformly at random

3: Run Replacement-Greedy on each machine l to obtain Sl and {T li } for 1 ≤ i ≤ m
4: S, {Ti} ← arg maxSl,{T li }

1
m

∑m
i=1 fi(T

l
i )

5: S′, {T ′i} ← Replacement-Greedy(
⋃
l S

l)
6: Return: arg max{ 1

m

∑m
i=1 fi(Ti),

1
m

∑m
i=1 fi(T

′
i )}

procedure results in a distributed algorithm with a constant factor approximation guarantee: (i)

randomly split the data amongst M machines, (ii) run the classical greedy on each machine and

pass outputs to a central machine, (iii) run another instance of the greedy algorithm over the union

of all the collected outputs from all M machines, and (iv) output the maximizing set amongst all

the collected solutions. Although our objective function G(S) is not submodular, we use a similar

framework and still manage to prove that our algorithms achieve constant factor approximations to

the optimal solution.

In Replacement-Distributed (Algorithm 8), a central machine first randomly partitions data

among M machines. Next, each machine runs Replacement-Greedy (Stan et al., 2017) on its

assigned data. The outputs Sl, {T li } of all the machines are sent to the central machine, which runs

another instance of Replacement-Greedy over the union of all the received answers. Finally, the

highest value set amongst all collected solutions is returned as the final answer. See Section C.5 for

a detailed explanation of Replacement-Greedy.

Theorem 4.5. The Replacement-Distributed algorithm outputs sets S∗, {T ∗i } ⊂ S, with |S∗| ≤

`, |T ∗i | ≤ k, such that

E[
1

m

m∑
i=1

fi(T
∗
i )] ≥ α

2
·OPT,

where α = 1
2 (1− 1

e2 ). The time complexity of algorithm is O(km`n/M + Mkm`2).

Unfortunately, for very large datasets, the time complexity of Replacement-Greedy could be

still prohibitive. For this reason, we can use a modified version of Replacement-Streaming

(called Replacement-Pseudo-Streaming) to design an even more scalable distributed algo-

rithm. This algorithm receives all elements in a centralized way, but it uses a predefined order

to generate a (pseudo) stream before processing the data. This consistent ordering is used to

ensure that the output of Replacement-Pseudo-Streaming is independent of the random or-
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dering of the elements. The only other difference between Replacement-Pseudo-Streaming and

Replacement-Streaming is that it outputs all sets Sτ , {Tτ,i} for all τ ∈ Γn (instead of just the

maximum). We use this modified algorithm as one of the main building blocks for Distributed-

Fast (outlined in Section C.4).

Theorem 4.6. The Distributed-Fast algorithm outputs sets S∗, {T ∗i } ⊂ S, with |S∗| ≤ `, |T ∗i | ≤

k, such that

E[
1

m

m∑
i=1

fi(T
∗
i )] ≥ α · γ

α+ γ
·OPT,

where α = 1
2 (1− 1

e2 ) and γ = 1
6+ε . The time complexity of algorithm is O(kmn log /̀M+Mkm`2 log `).

From Theorems 4.5 and 4.6, we conclude that the optimum number of machines M for Replacement-

Distributed and Distributed-Fast isO(
√
n/`) andO(

√
n/`), respectively. Therefore, Distributed-

Fast is a factor ofO(
√
n/log `) andO(

√
/̀log `) faster than Replacement-Greedy and Replacement-

Distributed, respectively.

4.1.8 Streaming Image Summarization

In this experiment, we will use a subset of the VOC2012 dataset (Everingham et al.). This dataset

has images containing objects from 20 different classes, ranging from birds to boats. For the purposes

of this application, we will use n = 756 different images and we will consider all m = 20 classes that

are available. Our goal is to choose a small subset S of images that provides a good summary of

the entire ground set Ω. In general, it can be difficult to even define what a good summary of a

set of images should look like. Fortunately, each image in this dataset comes with a human-labelled

annotation that lists the number of objects from each class that appear in that image.

Using the exemplar-based clustering approach (Mirzasoleiman et al., 2013), for each image we gen-

erate an m-dimensional vector x such that xi represents the number of objects from class i that

appear in the image. Figure 6 shows an example.

We define Ωi to be the set of all images that contain objects from class i, and correspondingly

Si = Ωi ∩ S (i.e. the images we have selected that contain objects from class i).

We want to optimize the following monotone submodular functions: fi(S) = Li({e0})−Li(S∪{e0}),

where Li(S) = 1
|Ωi|

∑
x∈Ωi

miny∈Si d(x, y). We use d(x, y) to denote the “distance” between two

images x and y. More accurately, we measure the distance between two images as the `2 norm
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0 - Aeroplane 
1 - Bicycle 
2 - Bird 
3 - Boat 
4-  Bottle 
5 - Bus 
6 - Car 
7 - Cat 
8 - Chair 
9 - Cow

10 - Dining Table  
11 - Dog 
12 - Horse 
13 - Motorbike 
14 - Person 
15 - Potted Plant 
16 - Sheep 
17 - Sofa 
18 - Train 
19 - TV Monitor

(a) (b)

Figure 6: (a) shows the twenty classes that appear in the VOC2012 dataset. The number adjacent to
each class represents the index of that class in the characteristic vector associated with each image.
For example, the image shown in (b) contains one boat, one bird, and one person. Therefore, the
characteristic vector for this image is [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]. This also
means that the image in (b) appears in the sets Ω2, Ω4, and Ω14.

between their characteristic vectors. We also use e0 to denote some auxiliary element, which in our

case is the all-zero vector.

Since image data is generally quite storage-intensive, streaming algorithms can be particularly de-

sirable. With this in mind, we will compare our streaming algorithm Replacement-Streaming

against the non-streaming baseline of Replacement-Greedy. We also compare against a heuristic

streaming baseline that we call Stream-Sum. This baseline first greedily optimizes the submodular

function F (S) =
∑m
i=1 fi(S) using the streaming algorithm developed by Buchbinder et al. (2015).

Having selected ` elements from the stream, it then constructs each Ti by greedily selecting k of

these elements for each fi.

To evaluate the various algorithms, we consider two primary metrics: the objective value, which

we define as
∑m
i=1 fi(Ti), and the wall-clock running time. We note that the trials were run using

Python 2.7 on a quad-core Linux machine with 3.3 GHz Intel Core i5 processors and 8 GB of RAM.

Figure 7 shows our results.

The graphs are organized so that each column shows the effects of varying a particular parameter,

with the objective value being shown in the top row and the running time in the bottom row.

The primary observation across all the graphs is that our streaming algorithm Replacement-

Streaming not only achieves an objective value that is similar to that of the non-streaming baseline

Replacement-Greedy, but it also speeds up the running time by a full order of magnitude. We
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Figure 7: The top row of graphs shows the objective values achieved by the various algorithms, while
the bottom row shows the run times. In (a) and (d) we vary l, the maximum size of the subset S.
In (b) and (e), we vary k, the maximum size of the set Ti assigned to each function fi. Lastly, in
(c) and (f), we vary ε, the parameter that controls the number of guesses we make for OPT.

also see that Replacement-Streaming outperforms the streaming baseline Stream-Sum in both

objective value and running time.

Another noteworthy observation from Figure 7(c) is that ε can be increased all the way up to ε = 0.5

before we start to see loss in the objective value. Recall that ε is the parameter that trades off the

accuracy of Replacement-Streaming with the running time by changing the granularity of our

guesses for OPT. As seen Figure 7(f), increasing ε up to 0.5 also covers the majority of running

time speed-up, with diminishing returns kicking in as we get close to ε = 1.

Also in the context of running time, we see in Figure 7(e) that Replacement-Streaming actually

speeds up as k increases. This seems counter-intuitive at first glance, but one possible reason is that

the majority of the time cost for these replacement-based algorithms comes from the swapping that

must be done when the Ti’s fill up. Therefore, the longer each Ti is not completely full, the faster

the overall algorithm will run.

Figure 8 shows some sample images selected by Replacement-Greedy (top) and Replacement-

Streaming (bottom). Although the two summaries contain only one image that is exactly the same,

we see that the different images still have a similar theme. For example, both images in the second

column contain bikes and people; while in the third column, both images contain sheep.
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Replacement-Streaming

Replacement-Greedy

Figure 8: Representative images selected in the different settings.

4.1.9 Distributed Ride-Share Optimization

In this application we want to use past Uber data to select optimal waiting locations for idle drivers.

Towards this end, we analyze a dataset of 100,000 Uber pick-ups in Manhattan from September

2014 (UberDataset), where each entry in the dataset is given as a (latitude, longitude) coordinate

pair. We model this problem as a classical facility location problem, which is known to be monotone

submodular.

Given a set of potential waiting locations for drivers, we want to pick a subset of these locations

so that the distance from each customer to his closest driver is minimized. In particular, given a

customer location a = (xa, ya), and a waiting driver location b = (xb, yb), we define a “convenience

score” c(a, b) as follows: c(a, b) = 2− 2
1+e−200d(a,b) , where d(a, b) = |xa−xb|+|ya−yb| is the Manhattan

distance between the two points.

Next, we need to introduce some functions we want to maximize. For this experiment, we can think

about different functions corresponding to different (possibly overlapping) regions around Manhat-

tan. The overlap means that there will still be some inherent connection between the functions, but

they are still relatively distinct from each other. More specifically, we construct regions R1, . . . , Rm

by randomly picking m points across Manhattan. Then, for each point pi, we want to define the

corresponding region Ri by all the pick-ups that have occurred within one kilometer of pi. However,

to keep the problem computationally tractable, we instead randomly select only ten pick-up loca-

tions within that same radius. Figure 9(a) shows the center points of the m = 20 randomly selected

regions, overlaid on top of a heat map of all the customer pick-up locations.
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Figure 9: (a) shows a heatmap of all pick-up locations, as well as the centers of the twenty random
regions that define each function fi. (b) and (c) show the effects of changing the number of machines
we use to distribute the computation. (d) shows the centers of the twenty new regions (chosen from
the same distribution) used for the evaluation in (e). (f) shows the training time for each summary
used in (e).

Given any set of driver waiting locations Ti, we define fi(Ti) as follows: fi(Ti) =
∑
a∈Ri maxb∈Ti c(a, b).

For this application, we will use every customer pick-up location as a potential waiting location for a

driver, meaning we have 100,000 elements in our ground set Ω. This large number of elements, com-

bined with the fact that each single function evaluation is computationally intensive, means running

the regular Replacement-Greedy will be prohibitively expensive. Hence, we will use this setup

to evaluate the two distributed algorithms we presented in Section 4.1.7. We will also compare our

algorithms against a heuristic baseline that we call Distributed-Greedy. This baseline will first

select ` elements using the greedy distributed framework introduced by Mirzasoleiman et al. (2013),

and then greedily optimize each fi over these ` elements.

Each algorithm produces two outputs: a small subset S of potential waiting locations (with size

` = 30), as well as a solution Ti (of size k = 3) for each function fi. In other words, each algorithm

will reduce the number of potential waiting locations from 100,000 to 30, and then choose 3 different

waiting locations for drivers in each region.

In Figure 9(b), we graph the average distance from each customer to his closest driver, which

we will refer to as the cost. One interesting observation is that while the cost of Distributed-

38



Fast decreases with the number of machines, the costs of the other two algorithms stay relatively

constant, with Replacement-Distributed marginally outperforming Distributed-Greedy. In

Figure 9(c), we graph the run time of each algorithm. We see that the algorithms achieve their

optimal speeds at different values of M , verifying the theory at the end of Section 4.1.7. Overall, we

see that while all three algorithms have very comparable costs, Distributed-Fast is significantly

faster than the others.

While in the previous application we only looked at the objective value for the given functions

f1, . . . , fm, in this experiment we also evaluate the utility of our summary on new functions drawn

from the same distribution. That is, using the regions shown in Figure 9(a), each algorithm will

select a subset S of potential waiting locations. Using only these reduced subsets, we then greedily

select k waiting locations for each of the twenty new regions shown in 9(d).

In Figure 9(e), we see that the summaries from all three algorithms achieve a similar cost, which is

significantly better than random. In this scenario, random is defined as the cost achieved when

optimizing over a random size ` subset and optimal is defined as the cost that is achieved when

optimizing the functions over the entire ground set rather than a reduced subset. In Figure 9(f),

we confirm that Distributed-Fast is indeed the fastest algorithm for constructing each summary.

Note that 9(f) is demonstrating how long each algorithm takes to construct a size ` summary, not

how long it is taking to optimize over this summary.

4.1.10 Conclusion

This section focused on the two-stage submodular maximization framework and provided the first

streaming and distributed solutions to this problem. In addition to proving constant factor theoret-

ical guarantees, we demonstrated the effectiveness of our algorithms on real world applications in

image summarization and ride-share optimization.

4.2 Submodular Streaming in All Its Glory: Tight Approximation, Minimum

Memory and Low Adaptive Complexity

4.2.1 Introduction

In this section, we consider the following optimization problem: given a non-negative monotone

submodular function f , find the set S∗ of size at most k that maximizes the function f :
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S∗ = arg max
S⊆V,|S|≤k

f(S). (5)

We define OPT = f(S∗). When the data is relatively small and it does not change over time, the

greedy algorithm and other fast centralized algorithms provide near-optimal solutions.

However, in many real-world applications, we are dealing with massive streams of images, videos,

texts, sensor logs, tweets, and high-dimensional genomics data which are produced from different

data sources. These data streams have an unprecedented volume and are produced so rapidly that

they cannot be stored in memory, which means we cannot apply classical submodular maximization

algorithms. In this section, our goal is to design efficient algorithms for streaming submodular

maximization in order to simultaneously provide the best approximation factor, memory complexity,

running time, and communication cost.

For problem 5, Norouzi-Fard et al. (2018) proved that any streaming algorithm2 with a memory

o(n/k) cannot provide an approximation guarantee better than 1/2. Sieve-Streaming is the first

streaming algorithm with a constant approximation factor (Badanidiyuru et al., 2014). This algo-

rithm guarantees an approximation factor of 1/2− ε and memory complexity of O(k log(k)/ε). While

the approximation guarantee of their Sieve-Streaming is optimal, the memory complexity is a

factor of log(k) away from the desired lower bound Θ(k). In contrast, Buchbinder et al. (2015) de-

signed a streaming algorithm with a 1/4-approximation factor and optimal memory Θ(k). The first

contribution in this section is to answer the following question: Is there a streaming algorithm with

an approximation factor arbitrarily close to 1/2 whose memory complexity is O(k)?

Our new algorithm, Sieve-Streaming++, closes the gap between the optimal approximation factor

and memory complexity, but it still has some drawbacks. In fact, in many applications of submod-

ular maximization, the function evaluations (or equivalently Oracle queries)3 are computationally

expensive and can take a long time to process.

In this context, the fundamental concept of adaptivity quantifies the number of sequential rounds

required to maximize a submodular function, where in each round, we can make polynomially many

independent Oracle queries in parallel. More formally, given an Oracle f , an algorithm is `-adaptive

if every query Q to the Oracle f at a round 1 ≤ i ≤ ` is independent of the answers f(Q) to all other

2. They assume the submodular function is evaluated only on feasible sets of cardinality at most k. In this section,
we make the same natural assumption regarding the feasible queries.

3. The Oracle for a submodular function f receives a set S and returns its value f(S).
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queries Q′ at rounds j, i ≤ j ≤ ` (Balkanski and Singer, 2018). The adaptivity of an algorithm

has important practical consequences as low adaptive complexity results in substantial speedups in

parallel computing time.

All the existing streaming algorithms require at least one Oracle query for each incoming element.

This results in an adaptive complexity of Ω(n) where n is the total number of elements in the stream.

Furthermore, in many real-world applications, data streams arrive at such a fast pace that it is not

possible to perform multiple Oracle queries in real time. This could result in missing potentially

important elements or causing a huge delay.

Our idea to tackle the problem of adaptivity is to introduce a hybrid model where we allow a machine

to buffer a certain amount of data, which allows us to perform many queries in parallel. We design

a sampling algorithm that, in only a few adaptive rounds, picks items with good marginal gain and

discards the rest. The main benefit of this method is that we can quickly empty the buffer and

continue the optimization process. In this way, we obtain an algorithm with optimal approximation,

query footprint, and near-optimal adaptivity.

Next, we focus on an additional challenge posed by real-world data where often multiple streams

co-exist at the same time. In fact, while submodular maximization over only one stream of data

is challenging, in practice there are many massive data streams generated simultaneously from a

variety of sources. For example, these multi-source streams are generated by tweets from news

agencies, videos and images from sporting events, or automated security systems and sensor logs.

These data streams have an enormous volume and are produced so rapidly that they cannot be

even transferred to a central machine. Therefore, in the multi-source streaming setting, other than

approximation factor, memory and adaptivity, it is essential to keep communication cost low. To

solve this problem, we show that a carefully-designed generalization of our proposed algorithm for

single-source streams also has an optimal communication cost.

4.2.2 Related Work

Badanidiyuru et al. (2014) were the first to consider a one-pass streaming algorithm for maximizing

a monotone submodular function under a cardinality constraint. Buchbinder et al. (2015) improved

the memory complexity of (Badanidiyuru et al., 2014) to Θ(k) by designing a 1/4 approximation

algorithm. Norouzi-Fard et al. (2018) introduced an algorithm for random order streams that beats

the 1/2 bound. Recently, Agrawal et al. (2019) substantially improved the result for random order
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streams to an almost tight 1 − 1/e − ε − O(k−1) approximation factor. Norouzi-Fard et al. (2018)

also studied the multi-pass streaming submodular maximization problem.

Chakrabarti and Kale (2015) studied streaming submodular maximization problem subject to the

intersection of p matroid constraints. These results were further extended to more general constraints

such as p-matchoids (Chekuri et al., 2015; Feldman et al., 2018). Also, there have been some very

recent works to generalize these results to non-monotone submodular functions (Chakrabarti and

Kale, 2015; Chekuri et al., 2015; Chan et al., 2017; Mirzasoleiman et al., 2018; Feldman et al., 2018).

Elenberg et al. (2017) provide a streaming algorithm with a constant factor approximation for a

generalized notion of submodular objective functions, called weak submodularity. In addition, a few

other works study the streaming submodular maximization over sliding windows (Chen et al., 2016;

Epasto et al., 2017).

To scale to very large datasets, several solutions to the problem of submodular maximization have

been proposed in recent years (Mirzasoleiman et al., 2015, 2016a; Feldman et al., 2017; Badanidiyuru

and Vondrák, 2014; Mitrovic et al., 2017a). Mirzasoleiman et al. (2015) proposed the first linear-

time algorithm for maximizing a monotone submodular function subject to a cardinality constraint

that achieves a (1 − 1/e − ε)-approximation. Buchbinder et al. (2017) extended these results to

non-monotone submodular functions.

Another line of work investigates the problem of scalable submodular maximization in the MapRe-

duce setting where the data is split amongst several machines (Kumar et al., 2013; Mirzasoleiman

et al., 2016b; Barbosa et al., 2015; Mirrokni and Zadimoghaddam, 2015; Mirzasoleiman et al., 2016c;

Barbosa et al., 2016; Liu and Vondrák, 2018). Each machine runs a centralized algorithm on its

data and passes the result to a central machine. Then, the central machine outputs the final answer.

Since each machine runs a variant of the greedy algorithm, the adaptivity of all these approaches is

linear in k, i.e., it is Ω(n) in the worst-case.

Practical concerns of scalability have motivated studying the adaptivity of submodular maximiza-

tion algorithms. Balkanski and Singer (2018) showed that no algorithm can obtain a constant

factor approximation in o(log n) adaptive rounds for monotone submodular maximization subject

to a cardinality constraint. They introduced the first constant factor approximation algorithm for

submodular maximization with logarithmic adaptive rounds. Their algorithm, in O(log n) adaptive

rounds, finds a solution with an approximation arbitrarily close to 1/3. These bounds were recently

improved by (1− 1/e− ε)-approximation algorithm with O(log(n)/poly(ε)) adaptivity (Fahrbach et al.,
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2019; Balkanski et al., 2019a; Ene and Nguyen, 2019). More recently and independently, Balkanski

et al. (2019b) and Chekuri and Quanrud (2019) studied the additivity of submodular maximization

under a matroid constraint. In addition, Balkanski et al. (2018) proposed an algorithm for max-

imizing a non-monotone submodular function with cardinality constraint k whose approximation

factor is arbitrarily close to 1/(2e) in O(log2 n) adaptive rounds. Fahrbach et al. (2018) improved the

adaptive complexity of this problem to O(log(n)). Chen et al. (2018) considered the unconstrained

submodular maximization problem and proposed the first algorithm that achieves the optimal ap-

proximation guarantee in a constant number of adaptive rounds.

Contributions The main contributions in this section are:

• We introduce Sieve-Streaming++ which is the first streaming algorithm with optimal approx-

imation factor and memory complexity. Note that our optimality result for the approximation

factor is under the natural assumption that the Oracle is allowed to make queries only over

the feasible sets of cardinality at most k.

• We design an algorithm for a hybrid model of submodular maximization, where it enjoys a

near-optimal adaptive complexity and it still guarantees both optimal approximation factor

and memory complexity. We also prove that our algorithm has a very low communication cost

in a multi-source streaming setting.

• We use multi-source streams of data from Twitter and YouTube to compare our algorithms

against state-of-the-art streaming approaches.

• We significantly improve the memory complexity for several important problems in the sub-

modular maximization literature by applying the main idea of Sieve-Streaming++ (see Ap-

pendix D.1).

4.2.3 Streaming Submodular Maximization

In this section, we propose an algorithm called Sieve-Streaming++ that has the optimal 1/2-

approximation factor and memory complexity O(k). Our algorithm is designed based on the Sieve-

Streaming algorithm (Badanidiyuru et al., 2014).

The general idea behind Sieve-Streaming is that choosing elements with marginal gain at least

τ∗ = OPT
2k from a data stream returns a set S with an objective value of at least f(S) ≥ OPT

2 . The

main problem with this primary idea is that the value of OPT is not known. Badanidiyuru et al.
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(2014) pointed out that, from the submodularity of f , we can trivially deduce ∆0 ≤ OPT ≤ k∆0

where ∆0 is the largest value in the set {f({e}) | e ∈ V }. It is also possible to find an accurate

guess for OPT by dividing the range [∆0, k∆0] into small intervals of [τi, τi+1). For this reason, it

suffices to try log k different thresholds τ to obtain a close enough estimate of OPT. Furthermore, in

a streaming setting, where we do not know the maximum value of singletons a priori, Badanidiyuru

et al. (2014) showed it suffices to only consider the range ∆ ≤ OPT ≤ 2k∆, where ∆ is the

maximum value of singleton elements observed so far. The memory complexity of Sieve-Streaming

is O(k log k/ε) because there are O(log k/ε) different thresholds and, for each one, we could keep at most

k elements.

4.2.4 The Sieve-Streaming++ Algorithm

In the rest of this section, we show that with a novel modification to Sieve-Streaming it is possible

to significantly reduce the memory complexity of the streaming algorithm.

Our main observation is that in the process of guessing OPT, the previous algorithm uses ∆ as a

lower bound for OPT; but as new elements are added to sets Sτ , it is possible to get better and

better estimates of a lower bound on OPT. More specifically, we have OPT ≥ LB , maxτ f(Sτ )

and as a result, there is no need to keep thresholds smaller than LB
2k . Also, for a threshold τ we

can conclude that there is at most LB
τ elements in set Sτ . These two important observations allow

us to get a geometrically decreasing upper bound on the number of items stored for each guess τ ,

which gives the asymptotically optimal memory complexity of O(k). The details of our algorithm

(Sieve-Streaming++) are described in Algorithm 9. Note that we represent the marginal gain of

a set A to the set B with f(A | B) = f(A ∪ B) − f(B). Theorem 4.7 guarantees the performance

of Sieve-Streaming++. See Appendix D.2 for the proof. Table 4 compares the state-of-the-art

streaming algorithms based on approximation ratio, memory complexity and queries per element.

Theorem 4.7. For a non-negative monotone submodular function f subject to a cardinality con-

straint k, Sieve-Streaming++ returns a solution S such that (i) f(S) ≥ (1/2−ε)·maxA⊆V,|A|≤k f(A),

(ii) memory complexity is O(k/ε), and (iii) number of queries is O(log(k)/ε) per each element.

44



Algorithm 9 Sieve-Streaming++

Input: Submodular function f , data stream V , cardinality constraint k and error term ε

1: τmin ← 0, ∆← 0 and LB← 0
2: while there is an incoming item e from V do
3: ∆← max{∆, f({e})}
4: τmin = max(LB,∆)

2k
5: Discard all sets Sτ with τ < τmin

6: for τ ∈ {(1 + ε)i|τmin/(1+ε) ≤ (1 + ε)i ≤ ∆} do
7: if τ is a new threshold then Sτ ← ∅
8: if |Sτ | < k and f({e} | Sτ ) ≥ τ then
9: Sτ ← Sτ ∪ {e} and LB← max{LB, f(Sτ )}

10: return arg maxSτ f(Sτ )

Algorithm Approx. Ratio Memory Queries per Element

Preemption-Streaming 1/4 O(k) O(k)
Sieve-Streaming 1/2− ε O(k log(k)/ε) O(log(k)/ε)
Sieve-Streaming++ 1/2− ε O(k/ε) O(log(k)/ε)

Table 4: Streaming algorithms for non-negative and monotone submodular maximization subject
to a cardinality constraint k. Preemption-Streaming is due to Buchbinder et al. (2015), Sieve-
Streaming is due to Badanidiyuru et al. (2014), and Sieve-Streaming++ is our contribution.

4.2.5 The Batch-Sieve-Streaming++ Algorithm

The Sieve-Streaming++ algorithm, for each incoming element of the stream, requires at least one

query to the Oracle which increases its adaptive complexity to Ω(n). Since the adaptivity of an

algorithm has a significant impact on its ability to be executed in parallel, there is a dire need to

implement streaming algorithms with low adaptivity. To address this concern, our proposal is to

first buffer a fraction of the data stream and then, through a parallel threshold filtering procedure,

reduce the adaptive complexity, thus substantially lower the running time. Our results show that a

small buffer memory can significantly parallelize streaming submodular maximization.

One natural idea for parallelization is to iteratively perform the following two steps: (i) for a threshold

τ , in one adaptive round, compute the marginal gain of elements to set Sτ and discard those with a

gain less than τ , and (ii) pick one of the remaining items with a good marginal gain and add it to Sτ .

This process is repeated at most k times. We refer to this algorithm as Sample-One-Streaming

and we will use it as a baseline in Section 4.2.9.

Although this method gives a 1/2 − ε approximation factor, the adaptive complexity of this algo-

rithm is Ω(k) which is still prohibitive in the worst case. For this reason, we introduce a hybrid
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algorithm called Batch-Sieve-Streaming++. This algorithm enjoys two important properties: (i)

the number of adaptive rounds is near-optimal, and (ii) it has an optimal memory complexity (by

adopting an idea similar to Sieve-Streaming++). Next, we explain Batch-Sieve-Streaming++

(Algorithm 10) in detail.

First, we assume that the machine has a buffer B that can store at most B elements. For a data

stream V, whenever Threshold fraction of the buffer is full, the optimization process begins. The

purpose of Threshold is to empty the buffer before it gets completely full and to avoid losing arriving

elements. Similar to the other sieve streaming methods, Batch-Sieve-Streaming++ requires us

to guess the value of τ∗ = OPT
2k . For each guess τ , Batch-Sieve-Streaming++ uses Threshold-

Sampling (Algorithm 11) as a subroutine. Threshold-Sampling iteratively picks random batches

of elements T . If their average marginal gain to the set of picked elements Sτ is at least (1 − ε)τ

it adds that batch to Sτ . Otherwise, all elements with marginal gain less than τ to the set Sτ are

filtered out. Threshold-Sampling repeats this process until the buffer is empty or |Sτ | = k.

Note that in Algorithm 10, we define the function fS as fS(A) = f(A | S), which calculates the

marginal gain of adding a set A to S. It is straightforward to show that if f is a non-negative and

monotone submodular function, then fS is also non-negative and monotone submodular.

The adaptive complexity of Batch-Sieve-Streaming++ is the number of times its buffer gets full

(which is at mostN/B) multiplied by the adaptive complexity of Threshold-Sampling. The reason

for the low adaptive complexity of Threshold-Sampling is quite subtle. In Line 3 of Algorithm

11, with a non-negligible probability, a constant fraction of items is discarded from the buffer. Thus,

the while loop continues for at most O(log B) steps. Since we increase the batch size by a constant

factor of (1 + ε) each time, the for loops within each while loop will run at most O(log(k)/ε) times.

Therefore, the total adaptive complexity of Batch-Sieve-Streaming++ is O(N log(B) log(k)
Bε ) Note

that when |S| < 1/ε, multiplying the size by (1 + ε) would increase it less than one, so we increase

the batch size one by one for the first loop in Lines 4–10 of Algorithm 11. Theorem 4.8 guarantees

the performance of Batch-Sieve-Streaming++. See Appendix D.3 for the proof.

Theorem 4.8. For a non-negative monotone submodular function f subject to a cardinality con-

straint k, define N to be the total number of elements in the stream, B to be the buffer size and

ε < 1/3 to be a constant. For Batch-Sieve-Streaming++ we have: (i) the approximation factor

is 1/2− 3ε/2, (ii) the memory complexity is O(B + k/ε), and (iii) the expected adaptive complexity is

O(N log(B) log(k)
Bε ).
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Algorithm 10 Batch-Sieve-Streaming++

Input: Stream of data V, submodular set function f , cardinality constraint k, buffer B with a
memory B, Threshold, and error term ε.

1: ∆← 0, τmin ← 0, LB← 0 and B ← ∅
2: while there is an incoming element e from V do
3: Add e to B
4: if the buffer B is Threshold percent full then

5: ∆← max{∆,maxe∈B f(e)}, τmin = max(LB,∆)
2k(1+ε) and discard all sets Sτ with τ < τmin

6: for τ ∈ {(1 + ε)i|τmin ≤ (1 + ε)i ≤ ∆} do
7: If τ is a new threshold then assign a new set Sτ to it, i.e., Sτ ← ∅
8: if |Sτ | < k then
9: T ← Threshold-Sampling(fSτ ,B, k − |Sτ |, τ, ε)

10: Sτ ← Sτ ∪ T
11: LB = maxSτ f(Sτ ) and B ← ∅
12: return arg maxSτ f(Sτ )

Algorithm 11 Threshold-Sampling

Input: Submodular set function f , set of buffered items B,
cardinality constraint k, threshold τ, and error term ε

1: S ← ∅
2: while |B| > 0 and |S| < k do
3: update B ← {x ∈ B : f({x} | S) ≥ τ} and filter out the rest
4: for i = 1 to d 1

ε e do
5: Sample x uniformly at random from B \ S
6: if f({x}|S) ≤ (1− ε)τ then
7: break and go to Line 2
8: else
9: S ← S ∪ {x}

10: if |S| = k then return S

11: for i = blog1+ε(1/ε)c to dlog1+ε ke − 1 do
12: t← min{b(1 + ε)i+1 − (1 + ε)ic, |B \ S|, k − |S|}
13: Sample a random set T of size t from B \ S
14: if |S ∪ T | = k then return S ∪ T
15: if

f(T | S)

|T | ≤ (1− ε)τ then

16: S ← S ∪ T and break
17: else
18: S ← S ∪ T
19: return S

Remark It is important to note that Threshold-Sampling is inspired by recent progress for

maximizing submodular functions with low adaptivity (Fahrbach et al., 2019; Balkanski et al., 2019a;

Ene and Nguyen, 2019) but it uses a few new ideas to adapt the result to our setting. Indeed, if we

had used the sampling routines from these previous works, it was even possible to slightly improve the

adaptivity of the hybrid model. The main issue with these methods is that their adaptivity heavily

depends on evaluating many random subsets of the ground set in each round. As it is discussed in
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the next section, we are interested in algorithms that are efficient in the multi-source setting. In that

scenario, the data is distributed among several machines, so existing sampling methods dramatically

increases the communication cost of our hybrid algorithm.

4.2.6 Multi-Source Data Streams

In general, the important aspects to consider for a single source streaming algorithm are approxi-

mation factor, memory complexity, and adaptivity. In the multi-source setting, the communication

cost of an algorithm also plays an important role. While the main ideas of Sieve-Streaming++

give us an optimal approximation factor and memory complexity, there is always a trade-off between

adaptive complexity and communication cost in any threshold sampling procedure.

As we discussed before, existing submodular maximization algorithms with low adaptivity need to

evaluate the utility of random subsets several times to guarantee the marginal gain of sampled items.

Consequently, this incurs high communication cost. In this section, we explain how Batch-Sieve-

Streaming++ can be generalized to the multi-source scenario with both low adaptivity and low

communication cost.

We assume elements arrive from m different data streams and for each stream the elements are

placed in a separate machine with a buffer Bi. When the buffer memory of at least one of these m

machines is Threshold% full, the process of batch insertion and filtering begins. The only necessary

change to Batch-Sieve-Streaming++ is to use a parallelized version of Threshold-Sampling

with inputs from {Bi}. In this generalization, Lines 5 and 13 of Algorithm 11 are executed in a

distributed way where the goal is to perform the random sampling procedure from the buffer memory

of all machines. Indeed, in order to pick a batch of t random items, the central coordinator asks each

machine to send a pre-decided number of items. Note that the set of picked elements Sτ for each

threshold τ is shared among all machines. And therefore the filtering step at Line 3 of Algorithm

11 can be done independently for each stream in only one adaptive round. Our algorithm is shown

pictorially in Figure 10.

Theorem 4.9 guarantees the communication cost of Batch-Sieve-Streaming++ in the multi-source

setting. See Appendix D.4 for the proof. Notably, the communication cost of our algorithm is inde-

pendent of the buffer size B and the total number of elements N .

Theorem 4.9. For a non-negative and monotone submodular function f in a multi-source streaming
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setting subject to a cardinality constraint k, define ∆0 as the largest singleton value when for the first

time a buffer gets full, and = OPT
∆0

. The total communication cost of Batch-Sieve-Streaming++

is O(k log
ε2 ).

Figure 10: The schematic representation of our proposed hybrid algorithm: there are m simultaneous
streams where data from each stream is buffered separately. When a buffer is Threshold% full, a
central machine starts the sampling process. The thresholds {τ} and sets {Sτ} are stored in a shared
memory. First, for each threshold τ , all elements with marginal gain less than τ are discarded from
the buffers. Then the central machine randomly samples t items T (with geometrically increasing
values of t) from the buffers of all streams and adds them to set Sτ if their average marginal gain is
at least (1− ε)τ . The sampling procedure stops when the average value of randomly picked items is
not good enough. These iterative steps are performed until k items are picked or the buffer memories
of all machines are emptied.

4.2.7 Experiments Introduction

In these experiments, we have three main goals:

1. For the single-source streaming scenario, we want to demonstrate the memory efficiency of

Sieve-Streaming++ relative to Sieve-Streaming.

2. For the multi-source setting, we want to showcase how Batch-Sieve-Streaming++ requires

the fewest adaptive rounds amongst algorithms with optimal communication costs.

3. Lastly, we want to illustrate how a simple variation of Batch-Sieve-Streaming++ can trade

off communication cost for adaptivity, thus allowing the user to find the best balance for their

particular problem.

These experiments will be run on a Twitter stream summarization task and a YouTube Video

summarization task, as described next.
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Twitter Stream Summarization In this application, we want to produce real-time summaries

for Twitter feeds. As of January 2019, six of the top fifty Twitter accounts (also known as “handles”)

are dedicated primarily to news reporting. Each of these handles has over thirty million followers,

and there are many other news handles with tens of millions of followers as well. Naturally, such

accounts commonly share the same stories. Whether we want to provide a periodic synopsis of major

events or simply to reduce the clutter in a user’s feed, it would be very valuable if we could produce

a succinct summary that still relays all the important information.

To collect the data, we scraped recent tweets from 30 different popular news accounts, giving us

a total of 42,104 unique tweets. In the multi-source experiments, we assume that each machine is

scraping one page of tweets, so we have 30 different streams to consider.

We want to define a submodular function that covers the important stories of the day without

redundancy. To this end, we extract the keywords from each tweet and weight them proportionally

to the number of retweets the post received. In order to encourage diversity in a selected set of

tweets, we take the square root of the value assigned to each keyword. More formally, consider a

function f defined over a ground set V of tweets. Each tweet e ∈ V consists of a positive value vale

denoting its number of retweets and a set of `e keywords We = {we,1, · · · , we,`e} from a general set of

keywords W. The score of a word w ∈We for a tweet e is defined by score(w, e) = vale. If w /∈We,

we define score(w, e) = 0. For a set S ⊆ V of tweets, the function f is defined as follows:

f(S) =
∑
w∈W

√∑
e∈S

score(w, e).

Figure 11 gives an example and Appendix D.5 gives a proof of submodularity for this function.

YouTube Video Summarization In this second task, we want to select representative frames

from multiple simultaneous and related video feeds. In particular, we consider YouTube videos of

New Year’s Eve celebrations from ten different cities around the world. Although the cities are not

all in the same time zone, in our multi-source experiments we assume that we have one machine

processing each video simultaneously.

Using the first 30 seconds of each video, we train an autoencoder that compresses each frame into

a 4-dimensional representative vector. Given a ground set V of such vectors, we define a matrix M

such that Mij = e−dist(vi,vj), where dist(vi, vj) is the euclidean distance between vectors vi, vj ∈ V .

Intuitively, Mij encodes the similarity between the frames represented by vi and vj .
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Figure 11: At the top, we show two tweets on the same subject from different accounts. We first
extract the list of keywords, as well as the number of retweets per word. We combine these into a
single list T of (keyword, score) pairs and then pass this list through our submodular function f .
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Figure 12: Eight representative frames chosen by Batch-Sieve-Streaming++ from ten different
simultaneous feeds of New Year’s Eve fireworks from around the world.

The utility of a set S ⊆ V is defined as a non-negative monotone submodular objective f(S) =

log det(I + αMS), where I is the identity matrix, α > 0 and MS is the principal sub-matrix of M

indexed by S (Herbrich et al., 2003). Informally, this function is meant to measure the diversity

of the vectors in S. Figure 12 shows the representative images selected by our Batch-Sieve-

Streaming++ algorithm for k = 8.
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4.2.8 Single-Source Experiments

In this section, we want to emphasize the power of Sieve-Streaming++ in the single-source stream-

ing scenario. As discussed earlier, the two existing standard approaches for monotone k-cardinality

submodular streaming are Sieve-Streaming and Preemption-Streaming.

As mentioned in Section 4.2.3, Sieve-Streaming++ theoretically has the best properties of both of

these existing baselines, with optimal memory complexity and the optimal approximation guarantee.

Figures 13a through 13d show the performance of these three algorithms on the YouTube task and

confirm that this holds in practice as well.

For the purposes of this test, we simply combined the different video feeds into one single stream.

We see that the memory required by Sieve-Streaming++ is much smaller than the memory re-

quired by Sieve-Streaming, but it still achieves the exact same utility. Furthermore, the memory

requirement of Sieve-Streaming++ is within a constant factor of Preemption-Streaming, while

its utility is much better. The Twitter experiment gives similar results so those graphs are deferred

to Appendix D.6.

4.2.9 Multi-Source Experiments

Once we move into the multi-source setting, the communication cost of algorithms becomes a key

concern also. In this section, we compare the performance of algorithms in terms of utility and

adaptivity where their communication cost is optimal.

Our first baseline is a trivial extension of Sieve-Streaming++. The multi-source extension for

this algorithm essentially functions by locally computing the marginal gain of each incoming ele-

ment, and only communicating it to the central machine if the marginal gain is above the desired

threshold. However, as mentioned at the beginning of Section 4.2.4, this algorithm requires Ω(n)

adaptive rounds. Our second baseline is Sample-One-Streaming, which was described in Section

4.2.5.

Figures 13e and 13f show the effect of the buffer size B on the performance of these algorithms for

the Twitter task. The main observation is that Batch-Sieve-Streaming++ can achieve roughly

the same utility as the two baselines with many fewer adaptive rounds. Note that the number of

adaptive rounds is shown in log scale.

Figures 13g and 13h show how these numbers vary with ε. Again, the utilities of the three baselines
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Figure 13: Graphs (a) to (d) show how the memory and utility of various single-source streaming al-
gorithms vary with the cardinality k and granularity ε. Note that the utility of Sieve-Streaming++
and Sieve-Streaming exactly overlap. In (a) and (b) we use k = 20, while in (c) and (d) we use
ε = 0.3. Graphs (e) to (h) show how the utility and adaptivity of various multi-source streaming
algorithms vary with the buffer size B and the granularity ε. Unless they are being varied on the
x-axis, we set ε = 0.7, B = 100, and k = 50.

are similar. We also see that increasing ε results in a large drop in the number of adaptive rounds

for Batch-Sieve-Streaming++, but not for Sample-One-Streaming. Appendix D.6 gives some

additional graphs, as well as the results for the YouTube dataset.
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4.2.10 Trade-off Between Communication and Adaptivity

In the multi-source setting, there is a natural exchange between communication cost and adaptivity.

Intuitively, the idea is that if we sample items more aggressively (which translates into higher

communication cost), a set S of k items is generally picked faster, thus it reduces the adaptivity. In

the real world, the preference for one or the other can depend on a wide variety of factors ranging

from resource constraints to the requirements of the particular problem.

In Threshold-Sampling, we ensure the optimal communication performance by sampling ti =

d(1 + ε)i+1 − (1 + ε)ie items in each step of the for loop. Instead, to reduce the adaptivity by a

factor of log(k), we could sample all the required k items in a single step. Thus, in one adaptive

round we mimic the two for loops of Threshold-Sampling. Doing this in each call to Algorithm

11 would reduce the expected adaptive complexity of Threshold-Sampling to the optimal log(B),

but dramatically increase the communication cost to O(k log B).

In order to trade off between communication and adaptivity, we can instead sample tRi = d(1 +

ε)i+R− (1 + ε)ie elements to perform R consecutive adaptive rounds in only one round. However, to

maintain the same chance of a successful sampling, we still need to check the marginal gain. Finally,

we pick a batch of the largest size tji such that the average marginal gain of the first tj−1
i items

is above the desired threshold. Then we just add just this subset to Sτ , meaning we have wasted

d(1 + ε)i+R − (1 + ε)i+je communication.

Scatter plots of Figure 14 shows how the number of adaptive rounds varies with the communication

cost. Each individual dot represents a single run of the algorithm on a different subset of the data.

The different colors cluster the dots into groups based on the value of R that we used in that run.

Note that the parameter R controls the communication cost.

The plot on the left comes from the Twitter experiment, while the plot on the right comes from the

YouTube experiment. Although the shapes of the clusters are different in the two experiments, we

see that increasing R increases the communication cost, but also decreases the number of adaptive

rounds, as expected.

4.2.11 Conclusion

In this section, we studied the problem of maximizing a non-negative submodular function over

a multi-source stream of data subject to a cardinality constraint k. We first proposed Sieve-

Streaming++ with the optimum approximation factor and memory complexity for a single stream
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Figure 14: Scatter plots showing how we can lower the number of adaptive rounds by increasing
communication. Each dot is the result of a single run of the algorithm and the colored clusters
represent a particular setting for R.

of data. Build upon this idea, we designed an algorithm for multi-source streaming setting with

a 1/2 approximation factor, O(k) memory complexity, a very low communication cost, and near-

optimal adaptivity. We evaluated the performance of our algorithms on two real-world data sets

of multi-source tweet streams and video streams. Furthermore, by using the main idea of Sieve-

Streaming++, we significantly improved the memory complexity of several important submodular

maximization problems.

5. Sequence Submodularity

As a motivating example, consider the problem of recommending movies to a user. A recommenda-

tion system could determine that the user might be interested in The Lord of the Rings franchise.

However, if the model does not consider the order of the movies it recommends, the user may watch

The Return of the King first and The Fellowship of the Ring last, which is likely to lead make the

user totally unsatisfied with an otherwise excellent recommendation.

Although there has been a large volume of work devoted to the study of submodular functions

in recent years, the vast majority of this work has been focused on algorithms that output sets,

not sequences. However, in many settings, the order in which we output items can be just as

important as the items themselves. In Section 5.1, we more formally introduce the concept of

sequence submodularity and present our contributions to this new subfield of submodularity.

Building on the example of recommending movies, many successful recommender systems not only

consider sequences, but also gather feedback from the user and then use this feedback to improve
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further recommendations. Not only do sequences already pose a dauntingly large search space, but

if we want to add such a notion of adaptivity, we must explicitly take into account past observations,

as well as the uncertainty of future outcomes. In Section 5.2, we introduce the first framework for

adaptive sequence submodularity.

5.1 Submodularity on Hypergraphs: From Sets to Sequences

5.1.1 Introduction to Sequence Submodularity

As mentioned earlier, the vast majority of existing results in the literature for submodularity are

limited to the scenario where we wish to output sets, not sequences. Alaei and Malekian (2010) and

Zhang et al. (2016) consider functions they call string- or sequence-submodular, but it is in a different

context. Li and Milenkovic (2017) look at a combination of submodularity and hypergraphs, but it

is specifically within the context of hypergraph clustering.

Tschiatschek et al. (2017) were the first to define sequence submodularity in the context that we

follow in this dissertation. In particular, we use directed graphs where the items are encoded as

vertices and the edges between these vertices encode the additional value of selecting items in a

particular order. The only known theoretical result for this setting is limited to the case where

the underlying graph is a directed acyclic graph (Tschiatschek et al., 2017). Considering sequences

instead of sets causes an exponential increase in the size of the search space, but it allows for much

more expressive models.

Recall that the goal is to select a sequence of items that will maximize some given objective function.

To generalize the problem description, we will refer to items as vertices from now on.

Let V = {v1, v2, . . . , vn} be the set of n vertices (items) we can pick from. A set of edges E encodes

the fact that there is additional value in picking certain vertices in a certain order. More specifically,

an edge eij = (vi, vj) encodes the fact that there is additional utility in selecting vj after vi has

already been chosen. Self-loops (i.e., edges that begin and end at the same vertex) encode the fact

that there is some individual utility in selecting a vertex.

In general, our input consists of a directed graph G = (V,E), a non-negative monotone submodular

set function h : 2E → R≥0, and a parameter k. The objective is to output a non-repeating sequence

σ of k unique nodes that maximizes the objective function:
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f(σ) = h
(
E(σ)

)
where

E(σ) =
{

(σi, σj) | (σi, σj) ∈ E, i ≤ j
}

We say that E(σ) is the set of edges induced by the sequence σ. It is important to note that the

function h is a submodular set function over the edges, not over the vertices. Furthermore, the

objective function f is neither a set function, nor is it necessarily submodular on the vertices.

The 

Two


Towers

The

Fellowship


Of The 

Ring

The 

Return

Of The

King

F T R

Figure 15: Graph for The Lord of the Rings franchise. The self-loops encode the fact that each movie
has some individual value. The edges encode the fact that there is additional utility in watching
the movies in the correct order. Notice that the utility of watching The Return of the King after
having already seen both The Fellowship of the Ring and The Two Towers is higher than the utility
of watching The Return of the King after having seen just one of the two.

For example, consider the graph in Figure 15, and let h
(
E(σ)

)
= |E(σ)|. That is, the value of a

sequence is simply the number of edges induced by that sequence. Consider the sequence σA = (F )

where the user has watched only The Fellowship of the Ring, the sequence σB = (T ) where the

user watched only The Two Towers, and the sequence σC = (F, T ) where the user watched The

Fellowship of the Ring and then The Two Towers:

f(σA) = f(F ) = h
(
(F, F )

)
= 1

f(σB) = f(T ) = h
(
(T, T )

)
= 1

f(σC) = f(F, T ) = h
(
(F, F ), (F, T ), (T, T )

)
= 3

This example shows that although the marginal gain of the edges is non-increasing in the context of

a growing set of edges (i.e., the function h is submodular on the edges), it is clear that the function

f is not submodular on the vertices. In particular, the marginal gain of The Two Towers is larger
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once the user has already viewed The Fellowship of the Ring.

Furthermore, just to fully clarify the concept of edges being induced by a sequence, consider the

sequence σD = (T, F ) where the user watched The Two Towers and then The Fellowship of the

Ring.

f(σD) = f(T, F ) = h
(
(T, T ), (F, F )

)
= 2

Notice that although sequences σC and σD contain the same movies, the order of σD means that

the edge (F, T ) is not induced, and thus, the value of the sequence is lower.

Throughout this section, we use the notation ∆ = min{din, dout}, where din = maxv∈V din(v) and

dout = maxv∈V dout(v). The previous work on our problem, due to Tschiatschek et al. (2017),

presented an algorithm (OMegA) enjoying a (1−e− 1

2∆ )-approximation guarantee when the underlying

graph G is a directed acyclic graph (except for self-loops).

Our Contributions We present two new algorithms: Sequence-Greedy and Hyper Sequence-

Greedy, which also provably achieve constant factor approximations (when ∆ is constant), but the

guarantees hold for general graphs and hypergraphs, respectively. Although the example given in

Figure 15 is indeed a directed acyclic graph, many real-world problems require a general graph or

hypergraph.

We showcase the utility of our algorithms on real world applications in movie recommendation,

online link prediction, and the design of course sequences for massive open online courses (MOOCs).

Furthermore, we show that even when the underlying graph is a directed acyclic graph, our general

graph algorithm performs comparably well. Our experiments also demonstrate the power of being

able to utilize hypergraphs and hyperedges.

5.1.2 Theoretical Results for General Graphs

In this section, we present our first algorithm, Sequence-Greedy. Sequence-Greedy is essentially the

same as the classical greedy algorithm, but instead of choosing the most valuable vertex at each

step, it chooses the most valuable valid edge.

More specifically, we start off with an empty sequence σ. At each step, we define E to be the set

of all edges whose end point is not already in σ. We then greedily select the edge eij ∈ E with
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maximum marginal gain h
(
eij | E(σ)

)
, where

h
(
eij | E(σ)

)
= h

(
E(σ) ∪ eij

)
− h
(
E(σ)

)
.

Recall that eij = (vi, vj). That is, vi is the start point of eij and vj is the endpoint. If eij is a

self-loop, then j = i and we append the single vertex vj to σ. Similarly, if j 6= i, but vi is already in

σ, then we still only append vj . Finally, if eij has two distinct vertices and neither of them is already

in the sequence, we append vi and then vj to σ. This description is summarized in pseudo-code in

Algorithm 12.

Algorithm 12 Sequence-Greedy (Forward)

1: Input: Directed graph G = (V,E)
2: Monotone submodular function h : 2E → R
3: Cardinality parameter k
4: Let σ ← ()
5: while |σ| ≤ k − 2 do
6: E = {eij ∈ E | vj /∈ σ} . eij = (vi, vj)
7: if E = ∅ then
8: break
9: eij = arg maxe∈E h(e | E(σ))

10: if vj = vi or vi ∈ σ then
11: σ = σ ⊕ vj . ⊕ means concatenate
12: else
13: σ = σ ⊕ vi ⊕ vj
14: Return: σ

Theorem 5.1. The approximation ratio of Algorithm 12 is at least 1−e−(1− 1
k

)

2din+1 .

The proof for Theorem 5.1 is given in Appendix E.1. Notice that the approximation guarantee

of Algorithm 12 depends on the maximum in-degree din. Intuitively, this is because Algorithm 12

builds σ by appending vertices to the end of the sequence. This means that each vertex we add to

σ decreases the size of E by at most din.

However, one can easily modify Algorithm 12 to build σ backwards by prepending vertices to the start

of the sequence at each step. More specifically, we redefine E to be the set of all edges whose start

point is not already in σ. Again we greedily select the edge eij ∈ E that maximizes h
(
eij | E(σ)

)
.

Now, if eij is a self-loop or vj is already in σ, we prepend the single vertex vi to the start of σ.

Otherwise, if eij has two distinct vertices and neither of them is already in the sequence, we prepend

vj to σ first, and then prepend vi (thus, maintaining the order). This description is summarized in
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pseudo-code in Algorithm 13 with the main differences noted as comments.

Algorithm 13 Sequence-Greedy (Backward)

1: Input: Directed graph G = (V,E)
2: Monotone submodular function h : 2E → R
3: Cardinality parameter k
4: Let σ ← ()
5: while |σ| ≤ k − 2 do
6: E = {eij ∈ E | vi /∈ σ}. . Note that E is defined differently than in Algorithm 12
7: if E = ∅ then
8: break
9: eij = arg maxe∈E h(e | E(σ))

10: if vi = vj or vj ∈ σ then
11: σ = vi ⊕ σ
12: else
13: σ = vi ⊕ vj ⊕ σ . vertices are appended to the beginning of σ

14: Return: σ

Algorithm 13 gives the same approximation ratio as Algorithm 12, but with a dependence on dout

instead of din. Thus, if we run both the forwards and backwards version of Sequence-Greedy and

take the maximum, we get an approximation ratio that depends on ∆ = min{din, dout}. Further-

more, notice that the approximation ratio improves as k increases. Therefore, we can summarize

the approximation ratio of Sequence-Greedy as follows.

Theorem 5.2. As k →∞, the approximation ratio of Sequence-Greedy approaches
1− 1

e

2∆+1 .

This is comparable to the (1 − e−
1

2∆ )-approximation guarantee that is achieved by the existing

algorithm OMegA, except that our guarantee is valid on general graphs, not just directed acyclic

graphs.

In addition to this provable approximation ratio, Sequence-Greedy has the strong advantage of being

computationally efficient. Both finding E and identifying the most valuable edge in E can be done

in O(m) time, where m = |E|. Thus, Sequence-Greedy runs in O(km) time. This is faster than

OMegA, which runs in O(m∆k2 log k).

5.1.3 Extension to Hypergraphs

Extending our results to hypergraphs allows us to encode increasingly sophisticated models. For

example, looking back on Figure 15, we see that the value of watching all three movies is just the
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sum of the pairwise additional values. However, hyperedges allow us to encode the fact that there

is even further utility in watching the entire franchise in order.

From this point on, we replace the directed graph G with a directed hypergraph H = (V,E). Each

edge e ∈ E of this directed hypergraph is a non-empty non-repeating sequence of vertices from V .

Let V (e) be the set of vertices found in the hyperedge e. We assume that the intersection of a

sequence and a set maintains the order of the sequence, which allows us to redefine E(σ) as

E(σ) = {e ∈ E | σ ∩ V (e) = e} .

Informally, E(σ) contains an edge e ∈ E if and only if all the vertices of e appear in σ in the proper

order.

We also need to explain how the concept of in-degrees and out-degrees extends to hypergraphs.

Self-loops contribute 1 to both the in-degree and the out-degree of that vertex. For all other edges

e ∈ E such that v ∈ V (e), they will contribute 1 to din(v) if v is not the first vertex of e, and 1 to

dout(v) if v is not the last vertex of e. Finally, we define r as the maximum size of any edge in E.

More formally, r = maxe∈E |e|.

Aside from the above redefinition of E(σ), there is no need to make other changes in the definition

of the objective function f . Specifically, it is still defined as f(σ) = h(E(σ)), where h : 2E → R≥0 is

a non-negative monotone submodular function.

Our algorithm for hypergraphs, Hyper Sequence-Greedy, is an extension of the original Sequence-

Greedy. Again, we start off with an empty sequence σ. This time, at each step we define E to be the

set of all hyperedges e ∈ E such that σ ∩ V (e) is a prefix of e. The idea is that we can only select a

hyperedge e if the vertices of e included in our sequence σ form a prefix of e, and they appear in σ

in the right order. We then select the hyperedge e∗ ∈ E that has the maximum marginal gain, and

append the vertices of e∗ (that are not already in our sequence) to σ without changing their order.

This description is summarized in pseudo-code in Algorithm 14.

Theorem 5.3. The approximation ratio of Algorithm 14 is at least 1−e−(1− r
k

)

rdin+1 .

The proof for Theorem 5.3 is given in Appendix E.2. As with Sequence-Greedy, we can also run

Hyper Sequence-Greedy backwards and take the maximum of the two results. In the backwards
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Algorithm 14 Hyper Sequence-Greedy (Forward)

1: Input: Directed hypergraph H = (V,E)
2: Monotone submodular function h : 2E → R
3: Cardinality parameter k
4: Let σ ← ()
5: while |σ| ≤ k − r do
6: Let E = {e ∈ E | σ ∩ V (e) is a prefix of e}
7: if E = ∅ then
8: break
9: e∗ = arg maxe∈E h(e | E(σ))

10: for every v ∈ e∗ in order do
11: if v /∈ σ then
12: σ = σ ⊕ v
13: Return: σ

version, we prepend the vertices to the start of the sequence and we can only select a hyperedge e

if V (e) ∩ σ is a suffix of e. Once more, this improves the approximation ratio in the sense that the

dependence on din is replaced with a dependence on ∆ = min{din, dout}. Additionally notice that, as

before, our approximation ratio improves as k increases. Thus, we can summarize the performance

guarantee of Hyper Sequence-Greedy as follows.

Theorem 5.4. As k →∞, the approximation ratio of Hyper Sequence-Greedy approaches
1− 1

e

r∆+1 .

Remarks: One can observe that this hypergraph setting is a generalization of the previous directed

graph setting. Specifically, Sequence-Greedy and the associated theory is a special case of Hyper

Sequence-Greedy for r = 2. Furthermore, if r = 1 (i.e., our graph has only self-loops) then Hyper

Sequence-Greedy is the same as the classical greedy algorithm.

We also note that while Algorithm 14 may select fewer than k vertices, the theoretical guarantees still

hold. Furthermore, since we assume that h is monotone, we can safely select k vertices in practice

every time. One simple heuristic for extending σ to k vertices is to only consider hyperedges with

at most k − |σ| vertices.

5.1.4 Movie Recommendation Application

In this application, we use the Movielens 1M dataset (Harper and Konstan, 2015) to recommend

movies to users based on the films they have reviewed in the past. This dataset contains 1,000,209

anonymous, time-stamped ratings made by 6,040 users for 3,706 different movies. As in Tschiatschek

et al. (2017), we do not want to predict a user’s rating for a given movie, instead we want to predict
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which movies the user will review next.

One issue with this dataset is that the distribution of the number of ratings per user (shown in

Figure 16a) has a very long tail, with the most prolific reviewer having reviewed 2,314 movies. In

order for our data to be representative of the general population, we remove all users who have rated

fewer than 20 movies or more than 50 movies. We also remove all movies with fewer than 1,000

reviews. This leaves us with 67,757 ratings made by 2,047 users for 207 different movies.

We first group and sort all the reviews by user and time-stamp, so that each user i has an associated

sequence σi of movies they have rated, where σij refers to the jth movie that user i has reviewed.

We use a 90/10 training/testing split of the data and 10-fold cross validation.

For each user i in the test set (Dtest), we use their first 8 movies as a given starting sequence

Si = {σi1 . . . σi8}. We want to use Si to select k movies that we think user i will review in the future.

Therefore, for each user i, we build a hypergraph Hi = (V,Ei), where V = {v1, . . . , vn} is the set

of all movies, and Ei is a set of hyperedges. Each hyperedge es has value ps, where s is a movie

sequence of length at most 3. Intuitively, ps is the conditional probability of reviewing the last movie

in s given that the rest of the movies in s have already been reviewed in the proper order.

Since we use empirical frequencies in the training data to calculate these conditional probabilities,

we may run into the issue of overfitting to rare sequences. To avoid this, we add a parameter d

to the denominator of our calculation of each edge value. This will increase the relative value for

sequences that appear more often. In this experiment, we use d = 20.

More formally, define Ns to be the number of users in the training set (Dtrain) that have reviewed

all the movies in the sequence s in the proper order. Also define sl to be last element in s, and s′ to

be s with sl removed. Now we can define the value of each edge es as follows:

ps =


Ns

Ns′ + d
s′ ⊆ Si ,

ps′
Ns

Ns′ + d
otherwise .

(6)

As mentioned above, the idea is that ps represents the conditional probability of reviewing sl given

that all the movies in s′ have already been reviewed in the proper order. If user i has not reviewed

all the movies in s′, then we scale down the value of that edge by ps′ (i.e., the conditional probability

of reviewing all the movies in s′).
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Note that if s′ = ∅, then we define Ns′ = |Dtrain|, thus ensuring that this definition also applies for

self-loops. A small subgraph of a fully trained hypergraph is shown in Figure 16b.

We use a probabilistic coverage utility function as our non-negative monotone submodular function

h. Mathematically,

h(E) =
∑

v∈nodes(E)

[
1−

∏
s∈E|sl=v

(1− ps)
]

We compare the performance of our algorithms, Sequence-Greedy and Hyper Sequence-Greedy, to

the existing submodular sequence baseline (OMegA), as well as a naive baseline (Frequency), which

just outputs the most popular movies that the user has not yet reviewed.

We also compare to a simple long short-term memory (LSTM) recurrent neural network (RNN).

In addition to tuning parameters, we experimented with various frameworks such as training on

uniform vs. variable-sized sequences. In the end, we obtained the best results when we trained the

neural network on the first k movies of each σi, where the target is to predict the next k movies

that the user i will review. In terms of the architecture, we use one layer of 512 LSTM nodes

(with a dropout of 0.5) followed by a dense layer with a softmax activation that returns a 207 × 1

vector P , where entry Pi is the probability that movie i will be reviewed. For each k, we simply

return the k highest values in P . As before, we used a 90/10 training/testing split with 10-fold cross

validation.

With enough data, neural networks will likely significantly outperform our algorithms. However,

with this comparison, we would like to show that in situations where data is relatively scarce, our

algorithms are competitive with existing neural network frameworks.

To measure the accuracy of a prediction, we use a modified version of the Kendall tau distance

(Kendall, 1938). First, for any sequence σ, we define T (σ) to be the set of all ordered pairs in σ.

For example, if σ = {1, 3, 2}, then T (σ) =
[
(1, 3), (1, 2), (3, 2)

]
.

Let Pi be our predicted sequence for the next k movies that user i will review, and let Qi be the

next k movies that user i actually reviewed. Then, we define the accuracy of the prediction Pi as

follows.

τ(Pi, Qi) =
|T (Pi) ∩ T (Qi)|
|T (Qi)|
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Figure 16: (a) Shows the long-tailed distribution of the number of ratings per user in the Movielens
1M dataset. (b) Shows a small subgraph of the overall hypergraph H that we train. For clarity,
we only show edges with value ps > 0.05, as defined in equation (6). We also highlight the size
3 hyperedge in green. (c) Shows the performance of our algorithms against existing baselines for
various cardinalities k.

In other words, τ(Pi, Qi) is the fraction of ordered pairs of the true answer Qi that appear in our

prediction Pi. Our experimental results in terms of this accuracy measure are summarized in Figure

16c.

These results showcase the power of using hypergraphs, as Hyper Sequence-Greedy consistently

outperforms Sequence-Greedy. We also notice that Hyper Sequence-Greedy outperforms the score

of the existing baseline OMegA by roughly 50%.

5.1.5 Online Link Prediction Application

In this application, we consider users who are searching through Wikipedia for some target article.

Given a sequence of articles they have previously visited, we want to predict which link they will

follow next. We use the Wikispeedia dataset (West et al., 2009), which consists of 51,138 completed

search paths on a condensed version of Wikipedia that contains 4,604 articles and 119,882 links

between them.

The setup for this problem is similar to that of section 5.1.4, so we will only go over the main

differences. Again we will use a 90/10 training/testing split of the data with 10-fold cross valida-

tion.

For each training set Dtrain, we build the underlying hypergraph H = (V,E). This time, V is the

set of all articles, and E is a set of hyperedges es where ps is the conditional probability of moving

to article sl given that the user had just visited s′ in succession.
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Figure 17: Given a sequence of articles a Wikipedia user has visited, we want to predict the next
link they will click. This bar chart shows the prediction accuracy, as well as the objective function
value, of various algorithms.

For each testing set Dtest, we will use the last article in each completed path as the target, and the

previous 3 articles as the given sequence. This means we will be able to use hyperedges of up to

size 4. We employ the same probabilistic coverage function h and the same baseline comparisons as

in Section 5.1.4. For this application, our neural network was most effective when we used a single

layer of 32 LSTM nodes (with a dropout of 0.2). Our results are shown in Figure 17.

In this case, Hyper Sequence-Greedy exhibits the best performance. We see that the simple neural

network implementation is outperformed by Hyper Sequence-Greedy as well as by some of the

baselines. This is likely a result of the data in this experiment being more sparse. Although in

this application we technically have more data than in the previous one, here we attempt to choose

between 4,604 articles, rather than just 207 movies.

We also show the results that the various algorithms achieve when evaluated on our objective function

f(σ) = h
(
E(σ)

)
. Asides from the LSTM-RNN, which doesn’t consider the objective function at

all, we see that the objective function values are relatively in line with the prediction accuracy.

This demonstrates that the probabilistic coverage function was a good choice for the objective

function.

5.1.6 Course Sequence Design Application

In this final application we want to use historical enrollment data in Massive Open Online Courses

(MOOCs) to generate a sequence of courses that we think would be of interest to users. We use a

publicly available dataset (Ho et al., 2014) that covers the first year of open online courses offered

66



by edX. The dataset consists of 641,139 registrations from 476,532 unique users across 13 different

online courses offered by Harvard and MIT. Amongst a plethora of other statistics, the data contains

information on when each user first and last accessed each course, how many course chapters they

accessed, and the grade they achieved if they were ultimately certified (i.e., fully completed) in the

course.

One natural way to think about the value of a sequence of courses is in terms of prerequisites. That

is, in what order should we offer courses to students in order to help them learn as much as possible.

This model comes with a natural measure of success as well, which is the grade each student gets in

each course. Unfortunately, out of the 476,532 unique users in this dataset only 180 were certified

(and thus, received grades) in 3 or more courses. Furthermore, this dataset only contains 13 different

courses (shown in Figure 18a), none of which are logical prerequisites for each other.

Instead, we can think about a sequence of courses being valuable if they will all be interesting to a

user who registers for them. Similarly to the prerequisites model where the order of courses affects

the user’s grade, the order in which a user registers for courses should also affect their interest. In

this dataset, we can measure interest by the percentage of the course that the user accessed. In

particular, we say that if a user was interested in a course i if she accessed at least one-third of all

the chapters for course i.

As always, we need to build the underlying hypergraph H = (V,E) for each training set. In this

case, V is the set of all courses and E is a set of hyperedges of form es, where s is a sequence

of at most 3 courses and ps is the probability that a user will be interested in sl given that she

previously showed interest in s′ in the proper order. Recall that sl is the last course in s, and s′ is

the sequence obtained from s after deleting sl. As in section 5.1.4, we also use a parameter d to avoid

overfitting to rare sequences. In this case we use d = 100. However, unlike Section 5.1.4, we are not

making recommendations based on a user’s history. Instead each algorithm will use the underlying

hypergraph to build a single sequence σ. Since we are not starting with any given sequence, we can

finally run Sequence-Greedy and Hyper Sequence-Greedy both forwards and backwards, and take

the maximum of the two results.

Different users will naturally have different interests, so it is unreasonable to expect that any single

sequence σ will work for all users. However, if σ is a “good” sequence, we could expect that users

who start all the courses in σ in the correct order ultimately end up showing interest in those courses.

Intuitively, the idea is that σ should capture a sequence of courses with some common theme and

67



Intro to Progamming

Circuits and Electronics

Electricity and Magnetism

Mechanics

Structures

Chemistry

Biology

Global Poverty

Intro to CS

Health in Numbers

Health and Environment

Justice

Ancient Greek Heroes

(a)

 

 

Frequency 
value = 0.020 
percentile = 0.400

Sequence-Greedy 
value = 0.073 
percentile = 0.900

OMegA 
value = 0.096 
percentile = 0.944

Hyper Sequence-Greedy 
value = 0.163 
percentile = 0.988

 

(b)

Circuits and
Electronics

Introduction to 
Programming 

Chemistry
Introduction to 

OMegA

Circuits and
Electronics

Introduction to 
Programming 

Electricity and
Magnetism

Hyper Sequence Greedy

Computer Science
Introduction to 

Computer Science
Introduction to 

(c)

Figure 18: (a) shows the 13 different courses that were available to students in this dataset. (b)
is a histogram of the value of every 4 course sequence that appears in the dataset. The values
of the courses selected by the various algorithms are overlayed on top of the corresponding bar in
the histogram. (c) shows representative course sequences selected by OMegA and Hyper Sequence-
Greedy.

present them in the best possible order. Therefore, if a user begins all the courses in σ they likely

have some interest in this common theme. Hence, if σ is a good sequence, it will present these

courses in a good order and properly pique the interest of these users.

Mathematically, we define Sσ to be the set of users who started all the courses in σ in the proper

order, and cij to be the percentage of course j that user i completed. Therefore, the value of σ for

a given test set Dtest is defined as:

Dtest(σ) =

∑
i∈Sσ

∑
j∈σ

cij(
|Sσ|+ d

)
|σ|

Using a 75/25 training/testing split of the data and 4-fold cross validation, we compare the effective-

ness of Hyper Sequence-Greedy, Sequence Greedy, OMegA, and Frequency for the task of selecting a

sequence of 4 courses. Note that due to the inherent randomness in the training/testing split, there

is some variance in the results. To be conservative, the results shown in Figure 18b are actually on

the lower end of the performance we see from our algorithms. Figure 18c shows some representative

sequences.

We see that Hyper Sequence-Greedy outperforms the other algorithms, as expected. From the

histogram, we also see that Hyper Sequence-Greedy tends to select one of the best possible sequences,

with Sequence-Greedy and OMegA both performing in the 90th percentile. Somewhat surprisingly,

OMegA (which has to use a random topological order in the absence of a directed acyclic graph)

outperforms Sequence-Greedy. However, this may be explained by the fact that k = 4 is relatively
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small. Unfortunately, only 1,153 users even started more than 4 courses, meaning that we cannot

effectively test sequences of larger length with this dataset.

5.1.7 Conclusion

In this section, we presented work that extended results on submodular sequences from directed

acyclic graphs to general graphs and hypergraphs. Our theoretical results showed that both our

algorithms, Sequence-Greedy and Hyper Sequence-Greedy, approach a constant factor approxima-

tion to the optimal solution (for constant ∆). Furthermore, we demonstrated the utility of our

algorithms, in particular the power of using hyperedges, on real world applications in movie recom-

mendation, online link prediction, and the design of course sequences for MOOCs.

5.2 Adaptive Sequence Submodularity

5.2.1 Introduction to Adaptive Sequence Submodularity

The machine learning community has long recognized the importance of both sequential and adaptive

decision making. The study of sequences has led to novel neural architectures such as LSTMs

(Hochreiter and Schmidhuber, 1997), which have been used in a variety of applications ranging from

machine translation (Sutskever et al., 2014) to image captioning (Vinyals et al., 2015). Similarly, the

study of adaptivity has led to the establishment of some of the most popular subfields of machine

learning including active learning (Settles, 2012) and reinforcement learning (Sutton and Barto,

2018).

In this section, we build on the work from Section 5.1 and we consider the optimization of problems

where both sequences and adaptivity are integral part of the process. More specifically, we focus on

problems that can be modeled as selecting a sequence of items, where each of these items takes on

some (initially unknown) state. The idea is that the value of any sequence depends not only on the

items selected and the order of these items but also on the states of these items.

As in the previous section, we will consider recommender systems as a running example. To start, the

order in which we recommend items can be just as important as the items themselves. For instance,

if we believe that a user will enjoy the Lord of the Rings franchise, it is vital that we recommend

the movies in the proper order. If we suggest that the user watches the final installment first,
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she may end up completely unsatisfied with an otherwise excellent recommendation. Furthermore,

whether it is explicit feedback (such as rating a movie on Netflix) or implicit feedback (such as

clicking/not clicking on an advertisement), most recommender systems are constantly interacting

with and adapting to each user. This feedback allows us to learn about the states of items we have

already selected, as well as make inferences about the states of items we have not selected yet.

Unfortunately, the expressive modeling power of sequences and adaptivity comes at a cost. Not only

does optimizing over sequences instead of sets exponentially increase the size of the search space, but

adaptivity also necessitates a probabilistic approach that further complicates the problem. Without

further assumptions, even approximate optimization is infeasible. As a result, we address this

challenge from the perspective of submodularity, an intuitive diminishing returns condition that

appears in a broad scope of different areas, but still provides enough structure to make the problem

tractable.

In terms of sequences, as discussed earlier, the majority of research on submodularity has focused on

sets rather than sequences. Section 5.1.1 gives further background. In terms of adaptivity, adaptive

set submodularity has been studied extensively (Golovin and Krause, 2011; Chen and Krause, 2013;

Gotovos et al., 2015; Fujii and Sakaue, 2019; Esfandiari et al., 2020; Agarwal et al., 2019), these

approaches fail to capture order dependencies. Other relevant work includes a paper by Chen et al.

(2015).

Our Contributions The main contributions of this section are organized as follows:

• In Section 5.2.2, we introduce our framework of adaptive sequence submodularity, which brings

tractability to problems that include both sequences and adaptivity.

• In Section 5.2.3, we present our algorithm for adaptive sequence submodular maximization.

We present theoretical guarantees for our approach and we elaborate on the necessity of our

novel proof techniques. We also show that these techniques simultaneously improve the state-

of-the-art bounds for the problem of sequence submodularity by a factor of e
e−1 . Furthermore,

we argue that any approximation guarantee must depend on the structure of the underlying

graph unless the exponential time hypothesis is false.

• In Sections 5.2.4 and 5.2.5, we use datasets from Amazon and Wikipedia to compare our

algorithm against existing sequence submodular baselines, as well as state-of-the-art deep

learning-based approaches.
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5.2.2 Adaptive Sequence Submodularity Framework

As discussed above, sequences and adaptivity are an integral part of many real-world problems.

This means that many real-world problems can be modeled as selecting a sequence σ of items from a

ground set V , where each of these items takes on some (initially unknown) state o ∈ O. A particular

mapping of items to states is known as a realization φ, and we assume there is some unknown

distribution p(φ) that governs these states.

For example in movie recommendation, the set of all movies is our ground set V and our goal is to

select a sequence of movies that a particular user will enjoy. If we recommend a movie vi ∈ V and

the user likes it, we place vi in state 1 (i.e. oi = 1). If not, we put it into state 0. Naturally, the

value of a movie should be higher if the user liked it, and lower if she did not.

Formally, we want to select a sequence σ that maximizes f(σ, φ), where f(σ, φ) is the value of

sequence σ under realization φ. However, φ is initially unknown to us and the state of each item

in the sequence is revealed to us only after we select it. In fact, even if we knew φ perfectly, the

set of all sequences poses an intractably large search space. From an optimization perspective, this

problem is hopeless without further structural assumptions.

Our first step towards taming this problem is to follow the work of Tschiatschek et al. (2017) and

assume that the value of a sequence can be defined using a graph. Concretely, we have a directed

graph G = (V,E), where each item in our ground set is represented as a vertex v ∈ V , and the edges

encode the additional value intrinsic to picking certain items in certain orders. Mathematically,

selecting a sequence of items σ will induce a set of edges E(σ):

E(σ) =
{

(σi, σj) | (σi, σj) ∈ E, i ≤ j
}
.

For example, consider the graph in Figure 19a and consider the sequence σA = [F, T ] where the user

watched The Fellowship of the Ring, and then The Two Towers, as well as the sequence σB = [T, F ]

where the user watched the same two movies but in the opposite order.

E(σA) = E
(
[F, T ]

)
=
{

(F, F ), (T, T ), (F, T )
}

E(σB) = E
(
[T, F ]

)
=
{

(T, T ), (F, F )
}

Using the self-loops, this graph encodes the fact that there is certainly some intrinsic value to

watching these movies regardless of the order. On the other hand, the edge (F, T ) encodes the fact

that watching The Fellowship of the Ring before The Two Towers will bring additional value to the
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Figure 19: (a) shows an underlying graph for a movie recommendation problem. The vertices are
movies and edges denote the additional value of watching certain movies in certain orders. (b)
extends this to the adaptive case, where both the vertices and the edges take on a state. The user
has reported that she liked the Fellowship of the Ring (so it is placed in state 1), but she did not
like The Two Towers (so it is placed in state 0). The state of the last movie is still unknown. In
this example, the state of an edge is equal to the state of its starting vertex.

viewer, and this edge is only induced if the movies appear in the correct order in the sequence.

With this graph based set-up, however, we run into issues when it comes to adaptivity. In particular,

the states of items naturally translate to states for the vertices, but it is not clear how to extend

adaptivity to the edges. We tackle this challenge by assigning a state q ∈ Q to each edge strictly

as a function of the states of its endpoints. That is, similarly to how a sequence σ induces a set of

edges E(σ), a realization φ for the states of the vertices induces a realization φE for the states of

the edges. We want to emphasize that our framework works for any deterministic mapping from

vertex states to edge states. One simple option that we will use throughout this section as a running

example is to define the state of an edge to always be equal to the state of its start vertex.

As we will discuss later, the analysis for this approach will necessitate some novel proof techniques,

but the resulting framework is very flexible and it allows us to fully redefine the adaptive sequence

problem in terms of the underlying graph:

f(σ, φ) = h
(
E(σ), φE

)
where σ induces E(σ) and φ induces φE .

The last necessary ingredient to bring tractability to this problem is submodularity. In particular,

we will assume that h
(
E(σ), φE

)
is weakly adaptive set submodular. This is a relaxed version of

standard adaptive set submodularity that can model an even larger variety of problems, and it is a

natural fit for the applications we consider in this section.

In order to formally define weakly-adaptive submodularity, we need a bit more terminology. To

start, we define a partial realization ψ to be a mapping for only some subset of items (i.e., the

states of the remaining items are unknown). For notational convenience, we define the domain of
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ψ, denoted dom(ψ), to be the list of items v for which the state of v is known. We say that ψ is

a subrealization of ψ′, denoted ψ ⊆ ψ′, if dom(ψ) ⊆ dom(ψ′) and they are equal everywhere in

the domain of ψ. Intuitively, if ψ ⊆ ψ′, then ψ′ has all the same information as ψ, and potentially

more.

Given a partial realization ψ, we define the marginal gain of a set A as

∆(A | ψ) = E
[
h
(
dom(ψ) ∪A, φ

)
− h
(
dom(ψ), φ

)
| ψ
]
,

where the expectation is taken over all the full realizations φ such that ψ ⊆ φ. In other words, we

condition on the states given by the partial realization ψ, and then we take the expectation across

all possibilities for the remaining states.

Definition 5.1. A function h : 2E × QE → R≥0 is weakly adaptive set submodular with

parameter γ if for all sets A ⊆ E and for all ψ ⊆ ψ′ we have:

∆(A | ψ′) ≤ 1

γ
·
∑
e∈A

∆(e | ψ).

This notion is a natural generalization of weak submodular functions Das and Kempe (2011); Horel

and Singer (2016) to adaptivity. The primary difference is that we condition on subrealizations

instead of just sets because we need to account for the states of items. Note that in our context, h

is a function on the edges, so we will condition on subrealizations of the edges ψE . However, these

concepts apply more generally to functions on any set and state spaces, so we use ψ in the formal

definitions.

Definition 5.2. A function h : 2E × QE → R≥0 is adaptive monotone if ∆(e | ψ) ≥ 0 for

all partial realizations ψ. That is, the conditional expected marginal benefit of any element is non-

negative.

Figure 19b is designed to help clarify these concepts. It includes the same graph as Figure 19a, but

now we can receive feedback from the user. If we recommend a movie and the user likes it, we put

the corresponding vertex in state 1 (green in the image). Otherwise, we put the vertex in state 0 (red

in the image). Vertices whose states are still unknown are denoted by a dotted black line.
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Next, in our example, we need to define a state for each edge in terms of the states of its endpoints.

In this case, we will define the state of each edge to be equal to the state of its start point. In Figure

19b, the user liked The Fellowship of the Ring, which puts edges (F, F ), (F, T ), and (F,R) in state 1

(green). She did not like The Two Towers, so edges (T, T ) and (T,R) are in state 0 (red), and we do

not know the state for The Return of the King, so the state of (R,R) is also unknown. We call this

partial realization ψ1 for the vertices, and the induced partial realization for the edges ψE1 .

Suppose our function h counts all induced edges that are in state 1. Furthermore, let us simply

assume that any unknown vertex is equally likely to be in state 0 or state 1. This means that the

self-loop (R,R) is also equally likely to be in either state 0 or state 1. Therefore, ∆
(
(R,R) | ψE1

)
=

1
2 × 0 + 1

2 × 1 = 1
2 .

On the other hand, consider the edge (F,R). Under ψ1, we know F is in state 1, which means

(F,R) is also in state 1, and thus, ∆
(
(F,R) | ψE1

)
= 1. However, if we consider a subrealization

ψ2 ⊆ ψ1 where we do not know the state of F , then it is equally likely to be in either state and

∆
(
(F,R) | ψE2

)
= 1

2×0+ 1
2×1 = 1

2 . Therefore, for this simple function we know that γ ≤ 0.5.

5.2.3 Adaptive Sequence-Greedy Policy and Theoretical Results

In this section, we introduce our Adaptive Sequence-Greedy policy and present its theoretical guar-

antees. We first formally define weakly adaptive sequence submodularity.

Definition 5.3. A function f(σ, φ) defined over a graph G(V,E) is weakly adaptive sequence

submodular if f(σ, φ) = h
(
E(σ), φE

)
where a sequence σ of vertices in V induces a set of edges

E(σ), realization φ induces φE, and the function h is weakly adaptive set submodular. Note that if

h is adaptive monotone, then f is also adaptive monotone.

Formally, a policy π is an algorithm that builds a sequence of k vertices by seeing which states have

been observed at each step, then deciding which vertex should be chosen and observed next. If σπ,φ

is the sequence returned by policy π under realization φ, then we write the expected value of π

as:

favg(π) = E
[
f(σπ,φ, φ)

]
= E

[
h
(
E(σπ,φ), φE

)]
where again the expectation is taken over all possible realizations φ. Our goal is to find a policy π

that maximizes favg(π), as defined above.
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Our Adaptive Sequence Greedy policy π (Algorithm 15) starts with an empty sequence σ. Through-

out the policy, we define ψσ to be the partial realization for the vertices in σ. In turn this gives us

the partial realization ψEσ for the induced edges.

At each step, we define the valid set of edges E to be the edges whose endpoint is not already in σ.

The main idea of our policy is that, at each step, we select the valid edge e ∈ E with the highest

expected value ∆(e | ψEσ ). For each such edge, the endpoints that are not already in the sequence σ

are concatenated (⊕means concatenate) to the end of σ, and their states are observed (updating ψσ).

Algorithm 15 Adaptive Sequence Greedy Policy π

1: Input: Directed graph G = (V,E), weakly adaptive sequence submodular f(σ, φ) =
h
(
E(σ), φE

)
, and cardinality constraint k

2: Let σ ← ()
3: while |σ| ≤ k − 2 do
4: E = {eij ∈ E | vj /∈ σ}
5: if E 6= ∅ then
6: eij = arg maxe∈E ∆(e | ψEσ )
7: if vi = vj or vi ∈ σ then
8: σ = σ ⊕ vj and observe state of vj
9: else

10: σ = σ ⊕ vi ⊕ vj and observe states of vi, vj

11: else
12: break
13: Return σ

Theorem 5.5. For adaptive monotone and weakly adaptive sequence submodular function f , the

Adaptive Sequence Greedy policy π represented by Algorithm 15 achieves

favg(π) ≥ γ

2din + γ
· favg(π∗),

where γ is the weakly adaptive submodularity parameter, π∗ is the policy with the highest expected

value and din is the largest in-degree of the input graph G.

As discussed by Mitrovic et al. (2018a), using a hypergraph H instead of a normal graph G allows

us to encode more intricate relationships between the items. For example, in Figure 19a, the edges

only encode pairwise relationships. However, there may be relationships between larger groups of

items that we want to encode explicitly. For instance, if included, the value of a hyperedge (F, T,R)

in Figure 19a would explicitly encode the value of watching The Fellowship of the Ring, followed by

watching The Two Towers, and then concluding with The Return of the King.
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We can also extend our policy to general hypergraphs (see Algorithm 20 in Appendix F.2.3). The-

orem 5.6 guarantees the performance of our proposed policy for hypergraphs.

Theorem 5.6. For adaptive monotone and weakly adaptive sequence submodular function f , the

policy π′ represented by Algorithm 20 achieves

favg(π
′) ≥ γ

rdin + γ
· favg(π∗),

where γ is the weakly adaptive submodularity parameter, π∗ is the policy with the highest expected

value and r is the size of the largest hyperedge in the input hypergraph.

In our proofs, we have to handle the sequential nature of picking items and the revelation of states in a

combined setting. Unfortunately, the existing proof methods for sequence submodular maximization

are not linear enough to allow for the use of the linearity of expectation that captures the stochasticity

of the states. For this reason, we develop a novel analysis technique to guarantee the performance of

our algorithms. Our proof replaces several lemmas from Mitrovic et al. (2018a) with tighter, more

linear analyses. Surprisingly, these new techniques also improve the theoretical guarantees of the

non-adaptive Sequence-Greedy and Hyper Sequence-Greedy (Mitrovic et al., 2018a) by a factor of

e
e−1 .

Proofs for both theorems are given in Appendix F.2.

General Unifying Framework One more theoretical point we want to highlight is that weakly

adaptive sequence submodularity provides a general unifying framework for a variety of common

submodular settings including, adaptive submodularity, weak submodularity, sequence submodular-

ity, and classical set submodularity. If we have γ = 1 and the state of all vertices is deterministic,

then we have sequence submodularity. Conversely, if the vertex states are unknown, but our graph

only has self-loops, then we have weakly adaptive set submodularity (and correspondingly adaptive

set submodularity if γ = 1). Lastly, if we have a graph with only self-loops, full knowledge of all

states, and γ = 1, then we recover the original setting of classical set submodularity.

Tightness of Theoretical Results We acknowledge that the constant factor approximation we

present depends on the maximum in-degree. While ideally the theoretical bound would be com-

pletely independent of the structure of the graph, we argue here that such a dependence is likely

necessary.
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Indeed, getting a dependence better than O(n1/4) in the approximation factor (where n is the total

number of items) would improve the state-of-the-art algorithm for the very well-studied densest k

subgraph problem (DkS) (Kortsarz and Peleg, 1993; Bhaskara et al., 2010). Moreover, if we could get

an approximation that is completely independent of the structure of the graph, then the exponential

time hypothesis would be proven false4. In fact, even an almost polynomial approximation would

break the exponential time hypothesis Manurangsi (2017). Next, we formally state this hardness

relationship. The proof is given in Appendix F.2.4.

Theorem 5.7. Assuming the exponential time hypothesis is correct, there is no algorithm that

approximates the optimal solution for the (adaptive) sequence submodular maximization problem

within a n1/(log logn)c factor, where n is the total number of items and c > 0 is a universal constant

independent of n.

5.2.4 Amazon Product Recommendation

Using the Amazon Video Games review dataset (McAuley et al., 2015), we consider the task of

recommending products to users. In particular, given the first g products that the user has purchased,

we want to predict the next k products that she will buy. Full experimental details are given in

Appendix F.3.1.

We start by using the training data to build a graph G = (V,E), where V is the set of all products

and E is the set of edges between these products. The weight of each edge, wij , is defined to be

the conditional probability of purchasing product j given that the user has previously purchased

product i. There are also self-loops with weight wii that represent the fraction of users that purchased

product i.

We define the state of each edge (i, j) to be equal to the state of product i. The intuitive idea is

that edge (i, j) encodes the value of purchasing product j after already having purchased product

i. Therefore, if the user has definitely purchased i (i.e., product i is in state 1), then they should

receive the full value of wij . On the other hand, if she has definitely not purchased i (i.e., product

i is in state 0), then edge (i, j) provides no value. Lastly, if the state of i is unknown, then the

expected gain of edge (i, j) is discounted by wii, the value of the self-loop on i, which can be viewed

as a simple estimate for the probability of the user purchasing product i. See Figure 20a for a small

example.

4. If the exponential time hypothesis is true it would imply that P 6= NP, but it is a stronger statement.
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We use a probabilistic coverage utility function as our monotone weakly-adaptive set submodular

function h. Mathematically,

h(E1) =
∑
j∈V

[
1−

∏
(i,j)∈E1

(1− wij)
]
,

where E1 ⊆ E is the subset of edges that are in state 1. Note that with this set-up, the value of γ

can be difficult to calculate exactly. However, roughly speaking, it is inversely proportional to the

value of the smallest weight self-loop wii.

We compare the performance of our Adaptive Sequence-Greedy policy against Sequence-Greedy

from Mitrovic et al. (2018a), the existing sequence submodularity baseline that does not consider

states. To give further context for our results, we compare against Frequency, a naive baseline that

ignores sequences and adaptivity and simply outputs the k most popular products.

We also compare against a set of deep learning-based approaches (see Appendix F.4 for full details).

In particular, we implement adaptive and non-adaptive versions of both a regular Feed Forward

Neural Network and an LSTM. The adaptive version will update its inputs after every prediction

to reflect whether or not the user liked the recommendation. Conversely, the non-adaptive version

will simply make k predictions using just the original input.

We use two different measures to compare the various algorithms. The first is the Accuracy

Score, which simply counts the number of recommended products that the user indeed ended up

purchasing. While this is a sensible measure, it does not explicitly consider the order of the sequence.

Therefore, we also consider the Sequence Score, which is a measure based on the Kendall-Tau

distance (Kendall, 1938). In short, this measure counts the number of ordered pairs that appear in

both the predicted sequence and the true sequence. Figure 20d gives an example comparing the two

measures.

Figures 20b and 20c show the performance of the various algorithms using the accuracy score and

sequence score, respectively. These results highlight the importance of adaptivity as the adaptive

algorithms consistently outperform their non-adaptive counterparts under both scoring regimes.

Notice that in both cases, as the number of recommendations increases, our proposed Adaptive

Sequence-Greedy policy is outperformed only by the Adaptive Feed Forward Neural Network. Al-

though LSTMs are generally considered better for sequence data than vanilla feed-forward networks,

we think it is a lack of data that causes them to perform poorly in our experiments.
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Figure 20: (a) shows a small subset of the underlying graph with states for a particular user. (b)
and (c) show our results on the Amazon product recommendation task. In all these graphs, the
number of given products g is 4. (d) gives an example illustrating the difference between the two
performance measures. (e) and (f) show our results on the same task, but using only 1% of the
available training to show that our algorithm outperforms deep learning-based approaches in data
scarce environments.

Another observation, which fits the conventional wisdom, is that deep learning-based approaches can

perform well when there is a lot of data. However, when the data is scarce, we see that the Sequence-

Greedy based approaches outperform the deep learning-based approaches. Figures 20e and 20f

simulate a data-scarce environment by using only 1% of the available data as training data. Note that

the difference between the adaptive algorithms and their non-adaptive counterparts is less obvious in

this setting because the adaptive algorithms use correct guesses to improve future recommendations,

but the data scarcity makes it difficult to make a correct guess in the first place.

Aside from competitive accuracy and sequence scores, the Adaptive Sequence-Greedy algorithm pro-

vides several advantages over the neural network-based approaches. From a theoretical perspective,

the Adaptive Sequence-Greedy algorithm has provable guarantees on its performance, while little

is known about the theoretical performance of neural networks. Furthermore, the decisions made

by the Adaptive Sequence-Greedy algorithm are easily interpretable and understandable (it is just

picking the edge with the highest expected value), while neural networks are generally a black-box.

On a similar note, Adaptive Sequence-Greedy may be preferable from an implementation perspective

because it does not require any hyperparameter tuning. It is also more robust to changing inputs in

79



the sense that we can easily add another product and its associated edges to our graph, but adding

another product to the neural network requires changing the entire input and output structure, and

thus, generally necessitates retraining the entire network.

5.2.5 Wikipedia Link Prediction

Using the Wikispeedia dataset (West et al., 2009), we consider users who are surfing through

Wikipedia towards some target article. Given a sequence of articles the user has previously vis-

ited, we want to guide her to the page she is trying to reach. Since different pages have different

valid links, the order of pages we visit is critical to this task. Formally, given the first g = 3

pages each user visited, we want to predict which page she is trying to reach by making a series of

suggestions for which link to follow.

In this case, we have G = (V,E), where V is the set of all pages and E is the set of existing links

between pages. Similarly to before, the weight wij of an edge (i, j) ∈ E is the probability of moving

to page j given that the user is currently at page i. In this case, there are no self-loops as we assume

we can only move using links, and thus we cannot jump to random pages. We again define two

states for the nodes: 1 if the user definitely visits this page and 0 if the user does not want to visit

this page.

This application highlights the importance of adaptivity because the non-adaptive sequence sub-

modularity framework cannot model this problem properly. This is because the Sequence-Greedy

algorithm is free to choose any edge in the underlying graph, so there is no way to force the algo-

rithm to pick a link that is connected to the user’s current page. On the other hand, with Adaptive

Sequence-Greedy, we can use the states to penalize invalid edges, and thus force the algorithm to

select only links connected to the user’s current page. Similarly, we only have the adaptive ver-

sions of the deep learning baselines because we need information about our current page in order to

construct a valid path (Appendix F.4 gives a more detailed explanation).

Figure 21a shows an example of predicted paths, while Figure 21b shows our quantitative results.

More detail about the relevance distance metric is given in Appendix F.3.2, but the idea is that it

measures the relevance of the final output page to the true target page (a lower score indicates a

higher relevance). The main observation is that the Adaptive Sequence Greedy algorithm actually

outperforms the deep-learning based approaches. The main reason for this discrepancy is likely a

lack of data as we have 619 pages to choose from and only 7,399 completed search paths.
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Figure 21: (a) The left side shows the real path a user followed from Batman to Computer. Given
the first three pages, the right side shows the path predicted by Adaptive Sequence Greedy versus
a deep learning-based approach. Green shows correct guesses that were followed, while red shows
incorrect guesses that were not pursued further. (b) shows the overall performance of the various
approaches.

5.2.6 Conclusion

In this section we introduced adaptive sequence submodularity, a general framework for bringing

tractability to the broad class of optimization problems that consider both sequences and adaptivity.

We presented Adaptive Sequence-Greedy—a general policy for optimizing weakly adaptive sequence

submodular functions. We provide a provable theoretical guarantee for our algorithm, as well as

a discussion about the tightness of our result. Our novel analysis also improves the theoretical

guarantees of Sequence-Greedy and Hyper Sequence-Greedy (Mitrovic et al., 2018a) by a factor of

e
e−1 . Finally, we evaluated the performance of Adaptive Sequence-Greedy on an Amazon product

recommendation task and a Wikipedia link prediction task. Not only does our Adaptive Sequence-

Greedy policy exhibit competitive performance with the state-of-the-art, but it also provides several

notable advantages, including interpretability, ease of implementation, and robustness against both

data scarcity and input adjustments.

6. Conclusion

Although Nemhauser, Wolsey, and Fisher published their seminal paper on submodularity all the

way back in 1978, there has been a strong resurgence in the interest, study, and application of

submodularity in the past decade, particularly as it relates to machine learning. One of the primary

reasons for this revival is that submodularity introduces enough structure to a problem so that we

can develop algorithms with theoretical guarantees for both how quickly we will arrive at a solution

(usually linear time, or faster), as well as how close that solution will be to the true optimal solution
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(usually a constant-factor approximation). This stands in stark contrast to the majority of the

current state-of-the-art in machine learning where heuristics with strong performance in practice,

but no provable theoretical guarantees, still reign supreme.

While submodularity gives us enough structure to achieve these nice theoretical guarantees, these

results would not be very interesting if they were never applicable in the real world. Indeed, another

major reason for the popularity of submodularity in the machine learning community is that many

machine learning problems naturally do have the diminishing returns property that submodularity

requires. Section 1 gives a non-exhaustive list of machine learning problems where submodularity has

successfully been applied. However, in spite of these successes, there are still many open problems

in submodularity, particularly within the context of real-world machine learning applications. In

this thesis, we presented novel results and solutions for three major challenges for modern machine

learning applications of submodularity.

The first challenge relates to controversial topic of data privacy and the problem of somehow still

using people’s data while provably guaranteeing that their privacy will be protected. In Section 3,

we propose a general and systematic study of differentially private submodular maximization. We

present privacy-preserving algorithms for both monotone and non-monotone submodular maximiza-

tion under cardinality, matroid, and p-system constraints, with guarantees that are competitive with

optimal. Along the way, we analyze a new algorithm for non-monotone submodular maximization,

which is the first (even non-privately) to achieve a constant approximation ratio while running in

linear time. We additionally provide two concrete experiments to validate the efficacy of these al-

gorithms. In the first experiment, we privately solve the facility location problem using a dataset

of Uber pickup locations in Manhattan. In the second experiment, we perform private submodular

maximization of a mutual information measure to select features relevant to classifying patients by

diabetes status.

The second challenge relates to scalability and the exponential growth in data that we have seen

in recent years. In general, more data is good, but in many cases, modern datasets have grown so

large that even the provable linear-time algorithms enabled by submodularity can be too slow. In

Section 4.1, we focus on a two-stage submodular framework where the goal is to use some given

training functions to reduce the ground set so that optimizing new functions (drawn from the

same distribution) over the reduced set provides almost as much value as optimizing them over the

entire ground set. In particular, we develop the first streaming and distributed solutions to this

problem. In addition to providing strong theoretical guarantees, we demonstrate both the utility
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and efficiency of our algorithms on real-world tasks including image summarization and ride-share

optimization.

In Section 4.2, we also focus on the challenge of scalability, but this time we look more closely

at the streaming framework. We first propose Sieve-Streaming++, which requires just one pass

over the data, keeps only O(k) elements and achieves the tight 1/2-approximation guarantee. The

best previously known streaming algorithms either achieve a suboptimal 1/4-approximation with

Θ(k) memory or the optimal 1/2-approximation with O(k log k) memory. Next, we show that by

buffering a small fraction of the stream and applying a careful filtering procedure, one can heavily

reduce the number of adaptive computational rounds, thus substantially lowering the computational

complexity of Sieve-Streaming++. We then generalize our results to the more challenging multi-

source streaming setting. We show how one can achieve the tight 1/2-approximation guarantee with

O(k) shared memory while minimizing not only the required rounds of computations but also the

total number of communicated bits. Finally, we demonstrate the efficiency of our algorithms on real-

world data summarization tasks for multi-source streams of tweets and of YouTube videos.

The last major challenge we study in this thesis relates to sequences and the observation that for

some machine learning problems (such as recommender systems), if we explicitly consider the order

of both the input and the output (i.e. treat them as sequences rather than sets), we can get much

better solutions. To extend the notion of submodularity to sequences, we use a directed graph on the

items where the edges encode the additional value of selecting items in a particular order. Existing

theory is limited to the case where this underlying graph is a directed acyclic graph. In Section

5.1, we introduce two new algorithms that provably give constant factor approximations for general

graphs and hypergraphs having bounded in or out degrees. Furthermore, we show the utility of our

new algorithms for real-world applications in movie recommendation, online link prediction, and the

design of course sequences for MOOCs.

Building on the concept of sequence submodularity, we observed that in some machine learning

applications, one needs to interactively select a sequence of items (e.g., recommending movies based

on a user’s feedback) or make sequential decisions in a certain order (e.g., guiding an agent through a

series of states). Not only do sequences already pose a dauntingly large search space, but we must also

take into account past observations, as well as the uncertainty of future outcomes. Without further

structure, finding an optimal sequence is notoriously challenging, if not completely intractable. In

Section 5.2, we introduce the framework of adaptive sequence submodularity and propose an adaptive

greedy policy with strong theoretical guarantees. Additionally, to demonstrate the practical utility of
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our results, we run experiments on Amazon product recommendation and Wikipedia link prediction

tasks.

While the theoretical side of submodularity has seen a great deal of research and progress, the

applied side is still catching up in comparison. There is a vast variety of important and interesting

applications of submodularity in the machine learning world, well beyond the few examples studied

in this thesis. There are also still many challenges when it comes to machine learning applications

of submodularity, but we hope that the work and results presented in this thesis are a step towards

eventually overcoming these challenges and ultimately promoting more wide-spread adoption of

submodularity past purely research settings and into the real world.
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David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social

network. In KDD, 2003.

Maurice Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

Katrin Kirchhoff and Jeff Bilmes. Submodularity for data selection in statistical machine translation.

In EMNLP, 2014.

Guy Kortsarz and David Peleg. On Choosing a Dense Subgraph (Extended Abstract). In FOCS,

1993.

Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical

models. In UAI, 2005.

90



Andreas Krause, Ajit Singh, and Carlos Guestrin. Near-optimal sensor placements in Gaussian

processes: Theory, efficient algorithms and empirical studies. In Journal of Machine Learning

Research, volume 9, 2008.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-

tional neural networks. In NeurIPS, 2012.

Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms

in mapreduce and streaming. In SPAA, 2013.

Yan LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. In Nature, 2015.

Pan Li and Olgica Milenkovic. Inhomogeneous hypergraph clustering with applications. NeurIPS,

2017.

Hui Lin and Jeff Bilmes. A class of submodular functions for document summarization. In ACL,

2011.

Hui Lin and Jeff Bilmes. Learning mixtures of submodular shells with application to document

summarization. In UAI, 2012.
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Appendix A. Introduction Appendix

A.1 Greedy

Let f be a given non-negative, monotone submodular function we want to maximize. Let S∗ =

arg max|S|≤k f(S) be the true optimal set and let Si be the set chosen by the greedy algorithm after

i iterations. We want to show that, under a cardinality constraint, the greedy algorithm achieves a

(1− 1
e ) approximation to the optimal set.

We will first use a proof by induction to show that:

f(S∗)− f(Si) ≤ (1− 1

k
)if(S∗)

We start off with the base case. When i = 0, we want to show that

f(S∗)− f(S0) ≤ (1− 1

k
)0f(S∗)

= f(S∗)

This simplifies to f(S0) ≥ 0, which we know is true because f is assumed to be non-negative.

Next, we have the inductive step where we assume that for all i <= l:

f(S∗)− f(Si) ≤ (1− 1

k
)if(S∗)

We now prove this statement to be true for i = l + 1.

First, assume there are m ≤ k items from the optimal set that are not yet included in Sl (m ≤ k

because the optimal set has k total items). That is, S∗ \ Sl = {v∗1 , v∗2 , . . . , v∗m}. For notational

simplicity, we will also define Sjl = Sl∪{v∗1 , . . . , v∗j } to be Sl unioned with the first j missing optimal

items (note that the order of the missing optimal items is not important, any order will work).

Lastly, let vl+1 be the item selected by the greedy algorithm at step l + 1.

With these definitions, we make the following observations:

1. f(S0
l ) = f(Sl). This is because S0

l is Sl without any items added, so clearly they will have the
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same value.

2. f(Sml ) ≥ f(S∗). This is because Sml is Sl with all of the missing optimal items added.

Therefore, S∗ ⊆ Sml , and by monotonicity we have f(S∗) ≤ f(Sml ).

3. f(Sml ) = f(Sm−1
l ) + f(v∗m | Sm−1

l ). This is just saying that the value of Sml is equal to the

value of Sm−1
l plus the marginal gain of the next element v∗m.

Using these observations, we can expand out f(S∗)− f(Sl):
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f(S∗)− f(Sl) = f(S∗)− f(S0
l ) By observation 1

≤ f(Sml )− f(S0
l ) By observation 2

=
[
f(Sm−1

l ) + f(v∗m | Sm−1
l )

]
− f(S0

l ) By observation 3

= f(v∗m | Sm−1
l ) + . . .+ f(v∗1 | S0

l ) + f(S0
l )− f(S0

l ) By observation 3

= f(v∗m | Sm−1
l ) + . . .+ f(v∗1 | S0

l )

≤ f(v∗m | S0
l ) + . . .+ f(v∗1 | S0

l ) By submodularity

≤ f(vl+1 | S0
l ) + . . .+ f(vl+1 | S0

l ) By greedy choice of vl+1

≤ kf(vl+1 | S0
l ) Because m ≤ k

= kf(vl+1 | Sl) By observation 1

Therefore, we have:

f(vl+1 | Sl) ≥
1

k

[
f(S∗)− f(Sl)

]
Call this observation 4

Next, notice that:

f(S∗)− f(Sl+1) = f(S∗)−
(
f(Sl) + f(vl+1 | Sl−1)

)
= f(S∗)− f(Sl)− f(vl+1 | Sl−1)

≤ f(S∗)− f(Sl)−
1

k

[
f(S∗)− f(Sl)

]
By observation 4

=
(
1− 1

k

)[
f(S∗)− f(Sl)

]
≤
(
1− 1

k

)l+1
f(S∗) By inductive hypothesis

This completes our proof by induction, which means that

f(S∗)− f(Si) ≤ (1− 1

k
)if(S∗)

holds for all i.
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Therefore, consider the termination of the greedy algorithm where i = k. We have:

f(S∗)− f(Sk) ≤ (1− 1

k
)kf(S∗)

≤ 1

e
f(S∗)

Therefore,

f(Sk) ≥ (1− 1

e
)f(S∗)

Appendix B. Submodularity and Differential Privacy Appendix

B.1 Additional Details About Large Margin Mechanism

Formally, given a quality function q : V ×Xn → R and parameters ` ∈ N, γ > 0, a dataset D satisfies

the (`, γ)-margin condition if q(v`+1, D) < q(v1, D)− γ.

For each ` = 1, . . . , |V |, define

g` = λ ·
(

3 +
4 ln(2`/δ)

ε

)
G` =

8λ ln(2/δ)

ε
+

16λ ln(7`2/δ)

ε
+ g`.

The Laplace distribution Lap(b) is specified by the density function 1
2b exp(−|x|/b), and a sample

Z ∼ Lap(b) obeys the tail bound Pr[Z > t] = 1
2 exp(−t/b) for all t > 0.

Algorithm 16 Large Margin Mechanism (LMM)

Input: Quality function q : V ×Xn → R, dataset D, privacy parameters ε, δ > 0
Output: Item v̂ ∈ V

1. Sort the elements of V so that q(v1, D) ≥ · · · ≥ q(v|V |, D)
2. Let m = q(v1, D) + Z for Z ∼ Lap(8λ/ε)
3. For ` = 1, . . . , |V |:

• Sample Z` ∼ Lap(16λ/ε)
• If m− q(v`+1, D) > G` + Z`: Break, reporting `

4. Return v̂ ∈ {v1, . . . , v`} sampled w.p. ∝ exp(εq(vi, D)/4λ).

Proposition B.1. Let ε, δ > 0. Consider the Large Margin Mechanism described in Algorithm 16.

Then
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• Algorithm LMM is (ε, δ)-differentially private.

• Suppose D ∈ Xn satisfies the (`, γ)-margin condition for

γ =
24λ ln(1/η)

ε
+G`

for some η > 0. Then there exists an event E with Pr[E] ≥ 1− η such that

E[q(v̂, D)|E] ≥ OPT−4λ · ln `
ε

,

where v̂ is the output of LMM(D).

Our presentation of Algorithm 16 differs slightly from that of Chaudhuri et al. (2014). Namely, we

simplify the choice of the noisy maximum m, and redistribute the algorithm’s use of the privacy

budget ε with an eye toward better performance in applications. Because of these small changes,

we sketch the proof of Proposition B.1 for completeness.

Privacy Analysis of Proposition B.1. Algorithm 16 can be thought of as releasing two items in

stages: First, the margin parameter ` in Step 3, and second, the item v̂ sampled via the expo-

nential mechanism in Step 4. We first claim that releasing the margin parameter ` guarantees

(ε/2, 0)-differential privacy. This follows because Steps 2 and 3 taken together are an instantiation

of the “AboveThreshold” algorithm, as presented by Dwork and Roth (Dwork and Roth, 2014, The-

orem 3.23), with respect to the sensitivity-(2λ) functions q(v1, D)− q(v`+1, D). Denote the output

` of the algorithm at Step 3 by S(D).

We now establish that Step 4 provides differential privacy. Following Chaudhuri et al. (2014), we

let A(`,D) capture the behavior of the algorithm in Step 4, where on receiving ` from Step 3, it

samples from the exponential mechanism on the top ` elements. They proved the following lemma

about A(`,D):

Lemma B.2 ((Chaudhuri et al., 2014, Lemma 5)). If D satisfies the (`, γ)-margin condition with

γ ≥ 2λ

(
1 +

2 ln(`/δ′)

ε

)
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for some δ′ > 0, then for every neighbor D′ ∼ D and any T ⊆ V , we have

Pr[A(`,D) ∈ T ] ≤ eε/2 Pr[A(`,D′) ∈ T ] + δ′.

Now fix neighboring datasets D ∼ D′. Let L denote the set of ` for which q(v1, D)−q(v`+1, D) ≥ g`.

By definition, if ` = S(D) ∈ L, then D indeed satisfies the (`, g`)-margin condition. Moreover, by

tail bounds on the Laplace distribution,

Pr[S(D) /∈ L] ≤ Pr
[
Z > 8λ ln(2/δ)/ε ∨

(
∃` ∈ {1, . . . , |V |} : Z` < −16λ ln(7`2/δ)/ε

)]
≤ δ

4
+

|V |∑
`=1

6δ

4π2`2

≤ δ

2
.

Hence, we have that for any T ⊆ V ,

Pr[LMM(D) ∈ T ] ≤
∑
`∈L

Pr[LMM(D) ∈ T |S(D) = `] · Pr[S(D) = `] + Pr[S(D) /∈ L]

≤
∑
`∈L

Pr[LMM(D) ∈ T |S(D) = `] · eε/2 Pr[S(D′) = `] +
δ

2

≤
∑
`∈L

(eε/2 Pr[LMM(D′) ∈ T |S(D′) = `] + e−ε/2
δ

2
) · eε/2 Pr[S(D′) = `] +

δ

2

by Lemma B.2

≤ eε Pr[LMM(D′) ∈ T ] + δ

This completes the privacy proof of Proposition B.1.

Utility Analysis of Proposition B.1. Suppose D satisfies the (`, γ)-margin condition with

γ ≥ 24λ ln(1/η)

ε
+G`,

for some η > 0. By the tail bound for the Laplace distribution and a union bound, we have that
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with probability at least 1− η,

Z ≥ 8

λ
ln

1

η
and Z` ≤

16

λ
ln

1

η
.

Let E be the event where this occurs. If E occurs, then indeed we have

(q(v1, D) + Z)− q(v`+1, D) > G` + Z`,

and hence Step 3 terminates outputting some `′ ≤ `. By Proposition 3.2, it follows that

E[q(v̂, D)|E] ≥ OPT−4λ · ln `
ε

.

Replacing the exponential mechanism with the large margin mechanism gives analogues of our re-

sults for monotone submodular maximization with a cardinality constraint, monotone submodular

maximization over a p-extendible system, and non-monotone submodular maximization with a car-

dinality constraint:

Theorem B.3. Suppose fD : 2V → R is monotone and has sensitivity λ. Then instantiating

Algorithm 2 with O = LMM and parameters ε0, δ0 = 0 provides (kε0, kδ0)-differential privacy. It

also provides (ε, δ′ + kδ0)-differential privacy for every δ′ > 0 with ε = kε2/2 + ε ·
√

2k ln(1/δ′).

Moreover, for every D ∈ Xn, there exists an event E with Pr[E] ≥ 1− β such that

E [fD(Sk)|E] ≥
(

1− 1

e

)
OPT−

k∑
i=1

4λ ln `i
ε0

where Sk ←R GLMM(D), and D satisfies the (`i, γi)-margin condition with respect to every function

of the form qi(v,D) = fD(Ŝi−1 ∪ {v})− fD(Ŝi−1), with γi = 24λ ln(k/β)/ε+G`i .

Theorem B.4. Instantiating Algorithm 3 with O = LMM under all of the conditions of Theorem B.3

gives the same privacy guarantee (replacing k with r(I)) and gives

E [fD(S)|E] ≥ 1

p+ 1
·OPT−

r(I)∑
i=1

4λ ln `i
ε0

.

Theorem B.5. Instantiating Algorithm 4 with O = LMM under all of the conditions of Theorem B.3
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gives the same privacy guarantee and gives

E [fD(Sk)|E] ≥ 1

e

(
1− 1

e

)
OPT−

k∑
i=1

4λ ln `i
ε0

.

Moreover, if fD is monotone, then

E [fD(Sk)|E] ≥ 0.468 OPT−
k∑
i=1

4λ ln `i
ε0

.

B.2 Submodular Maximization with Differential Privacy Proofs

B.2.1 Proof of Theorem 3.3

Proof. The privacy guarantee of Theorem 3.3 follows immediately from the (ε, 0)-differential privacy

of the exponential mechanism, together with Theorem 3.1.

To simplify notation in the utility proofs in this section, we suppress the dependence of the sub-

modular function of interest on D, i.e. we write f = fD. We also introduce the notation fS(T ) =

f(S ∪ T )− f(S) to denote the marginal gain by adding T to the set S.

To argue that the algorithm achieves good utility, recall that in each step i, the exponential mecha-

nism guarantees a solution vi with

E[fSi−1
(vi)] ≥ max

v∈V \Si−1

fSi−1
(v)− α (7)

where α = 2λ · ln |V |/ε.

Let S∗ denote any set of size k with f(S∗) = OPT. Below, let us condition on having obtained some

set Si−1 of elements after the first i− 1 iterations of our algorithm. Then

E[fSi(vi)] = max
v∈V \Si−1

fSi−1
(v)− α (by Condition (7))

≥ 1

k

(∑
v∈S∗

fSi−1
(v)

)
− α

≥ f(S∗ ∪ Si−1)− f(Si−1)

k
− α (by submodularity of f)

≥ OPT−f(Si−1)

k
− α (by monotonicity of f)

We now unfix from conditioning on having obtained a specific Si−1 by taking the expectation over
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all choices of such a set. This gives

E[fSi−1
(vi)] ≥

OPT−E[f(Si−1)]

k
− α

Rearranging yields

OPT−E[f(Si)] ≤
(

1− 1

k

)
(OPT−E[f(Si−1)]) + α

Recursively applying this bound yields

OPT−E[f(Si)] ≤
(

1− 1

k

)i
(OPT−E[f(S0)]) +

i−1∑
j=0

(
1− 1

k

)j
· α

≤
(

1− 1

k

)i
OPT +α.

Hence, we conclude

E[f(Sk)] ≥
[

1−
(

1− 1

k

)k]
OPT−α

≥
(

1− 1

e

)
OPT−α.

B.2.2 Proof of Theorem 3.4

Proof. The privacy guarantee of Theorem 3.4 follows from Theorem 3.1.

In our proof of utility, we again suppress the dataset D, and use the notation fS(T ) to denote

f(S ∪ T ) − f(S). Our proof applies to any greedy algorithm that, in each round i, selects an item

vi with

E
[
fSi−1

(vi)
]
≥ max
v:Si−1∪{v}∈I

fSi−1
(vi)− α (8)

for some error term α > 0.

We follow the proof outlined by Calinescu et al. (2011). Fix an optimal solution O ∈ I, i.e.

f(O) = OPT. Let S1, . . . , Sr be any sequence representing the output of the algorithm, where

r = r(I). (If the algorithm terminates in an earlier round k < r, then extend its output by setting

Si = Sk for each i = k + 1, . . . , r.) To find such a sequence, we define a partition O1, . . . , Or of O

via Algorithm 17.
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Algorithm 17 Partition construction algorithm

Input: Optimal solution O, sets S1, . . . , Sr
Output: A partition O1, O2, . . . , Or of O

1. Initialize T0 = O
2. For i = 1, 2, . . . , r:

(a) If vi ∈ Ti−1, set Oi = {vi};
Else, let Oi ⊆ Ti−1 be the smallest subset s.t. ((Si−1 ∪ Ti−1) \Oi) ∪ {vi} ∈ I

(b) Set Ti = Ti−1\Oi
3. Return O1, O2, . . . , Or

To see that O1, . . . , Or is indeed a partition, observe that Si ∪ Ti ∈ I and Si ∩ Ti = ∅ for every i.

Therefore, it must be the case that Tr = ∅, since Sr ∪Tr ∈ I and Sr is maximal when the algorithm

terminates. Hence, the disjoint sets O1, . . . , Or do in fact exhaust O.

Lemma B.6. For every i = 1, . . . , r, we have E
[
fSi−1

(vi)
]
≥ 1

pE
[
fSi−1

(Oi)
]
− α.

Before proving Lemma B.6, we show how to use it to complete the proof of Threorem 3.4. Recursively

applying the lemma shows that for every i,

E [f(Si)] ≥
1

p

i∑
j=1

E
[
fSj−1

(Oj)
]
− iα.

Hence, we obtain

E [f(Sr)] ≥
1

p

r∑
i=1

E
[
fSi−1

(Oi)
]
− rα

≥ 1

p

r∑
i=1

E [fSr (Oi)]− rα (by submodularity)

≥ 1

p
E [fSr (O)]− rα (by linearity of expectation and submodularity)

≥ 1

p
(f(O)− E [f(Sr)])− rα. (by monotonicity)

Rearranging gives the desired result E [f(Sr)] ≥ 1
p+1f(O)− p

p+1rα.

Proof of Lemma B.6. The partition construction algorithm that every set Oi satisfies |Oi| ≤ p; this

follows from the definition of p-extendibility and the fact that Si−1 ∪ {vi} ∈ I. Moreover, any

element in Oi is a candidate for inclusion in Si, since Si−1 ∪ {v} ∈ I for every v ∈ Oi.

It is also clear from the partition construction that for each v ∈ Oi, we have Si−1 ∪ {v} ∈ I. Below,
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fix a choice of i and condition on the algorithm’s history up to iteration i− 1. This fixes choices of

the sets S1, . . . , Si−1, as well as T1, . . . , Ti and O1, . . . , Oi.

Then since E
[
fSi−1

(vi)
]
≥ fSi−1

(v)− α for every v ∈ Oi, we have

E
[
fSi−1

(vi)
]
≥ 1

|Oi|
fSi−1

(Oi)− α (by submodularity)

≥ 1

p
fSi−1

(Oi)− α.

Taking the expectation over the conditioned event gives the asserted result.

B.2.3 Proof of Theorem 3.5

The analysis below will work generally for any random selection procedure guaranteeing that in

every round i = 1, . . . , k,

E
[
fSi−1

(vi)
]
≥ max
v∈(Vi∪{ui})

fSi−1
(v)− α

for some parameter α > 0. We begin by fixing an optimal solution S∗ with f(S∗) = OPT.

Claim B.7 ((Buchbinder et al., 2014, Observation 3.2)). For every i = 0, . . . , k, we have E [f(S∗ ∪ Si)] ≥

(1− 1/k)i ·OPT.

Proof. For every iteration i = 1, . . . k, the subsampling step ensures that every element in V ∪ U is

selected for inclusion in Si with probability at most 1/k. Hence, for every i = 0, 1, . . . , k, each element

is included in Si with probability at most 1 − (1 − 1/k)i. Define g : 2V → R by g(S) = g(S∗ ∪ S).

Then g is a submodular function, and

E [f(S∗ ∪ Si)] = E [g(Si \ S∗)] ≥ (1− 1/k)ig(∅) = (1− 1/k)i OPT .

The inequality here follows from the fact that for any set T and any random subset T ′ ⊆ T that

includes every element of T with probability p, we have E [g(T ′)] ≥ (1− p) · g(∅) + p · g(T ) for any

submodular function g Feige et al. (2007).
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Claim B.8.

E[fSi−1
(vi)] ≥

(
1− 1

e

)
·
(
E[f(S∗ ∪ Si−1)]− E[f(Si−1)]

k

)
− α.

Proof. Begin by conditioning on a fixed choice of the set Si−1. Let M ⊆ (V ∪ U) denote a set of k

items which maximizes the quantity
∑
v∈M fSi−1

(v). That is, M consists of the k items in (V ∪ U)

which result in the largest marginal gain for fSi−1
.

Let G denote the event that the subsampled set Vi∪{ui} contains at least one element in M . Observe

that even if G does not occur, we have

E
[
fSi−1

(vi)|G
]
≥ fSi−1

(ui)− α ≥ −α. (9)

We claim moreover that

E
[
fSi−1

(vi)|G
]
≥ 1

k

∑
v∈M

fSi−1
(v)− α. (10)

To see this, sort the items in V ∪ U as v(1), . . . , v(m), v(m+1), . . . , v(m+k), where m = |V | and

fSi−1
(v(j)) ≥ fSi−1

(v(j+1)) for every j = 1, . . . ,m + k − 1. Break ties in such a way that M =

{v(1), . . . , v(k)}, and that there is some t ∈ {0, . . . , k} such that v(1), . . . , v(t) ∈ V and v(t+1), . . . , v(k) ∈

U (that is, real elements come before dummy elements).

Let Aj denote the event that j is the smallest index such that v(j) ∈ Vi ∪ {ui}. Then the events

A1, . . . , Am+k are mutually exclusive and exhaustive. Moreover, by the definition of G, we have∑k
j=1 Pr[Aj ] = Pr[G].

It is easy to see that

Pr[A1] =
1

k

Pr[Aj ] =

(
m−j
m/k−1

)(
m
m/k

) j = 2, . . . , t,

Pr[Aj ] =

(
m−t
m/k

)(
m
m/k

) · 1

k
·
(

1− 1

k

)j−t−1

j = t+ 1, . . . , k.

Moreover, Pr[Aj ] is a decreasing function j = 1, . . . , k. Hence, Pr[Aj |G] = Pr[Aj ]/Pr[G] is a

decreasing function of j = 1, . . . , k as well. Moreover, Pr[A1|G] ≥ Pr[A1] = 1/k. This allows us to

calculate
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E
[
fSi−1

(vi)|G
]

=
k∑
j=1

E
[
fSi−1

(vi)|Aj
]
· Pr[Aj |G]

≥ 1

k

k∑
j=1

(
fSi−1

(v(j))− α
)

(by Chebyshev’s sum inequality)

=
1

k

∑
v∈M

fSi−1
(v)− α.

This establishes the claimed inequality (10).

To estimate E
[
fSi−1

(vi)|G
]
, it remains to calculate Pr[G]. Suppose M consists of t elements from

V and k − t dummy elements from U . Then

Pr[G] = 1− Pr[M ∩ (Vi ∪ {ui}) = ∅]

= 1−
(
m−t
m/k

)(
m
m/k

) · t
k

= 1− (m− (m/k))(m− (m/k)− 1) . . . (m− (m/k)− t+ 1)

m(m− 1) . . . (m− t+ 1)
· t
k

= 1−
(

1− 1

k

)(
1− 1

k
· m

m− 1

)
. . .

(
1− 1

k
· m

m− t+ 1

)
· t
k

≥ 1−
(

1− 1

k

)t
· t
k

≥ 1− te−t/k

k

≥ 1− 1

e
,

where the last inequality follows from the fact that the function r(x) = xe−x is maximized at x = 1,

where it takes the value 1/e.

Let M ′ be the set containing S∗ \ Si−1 together with enough dummy elements to have size exactly
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k. We conclude that

E
[
fSi−1

(vi)
]

= Pr[G] · E
[
fSi−1

(vi)|G
]

+ (1− Pr[G]) · E
[
fSi−1

(vi)|Ḡ
]

≥
(

1− 1

e

)(
1

k

∑
v∈M

fSi−1
(v)− α

)
− 1

e
· α (by (10) and (9))

≥
(

1− 1

e

)(
1

k

∑
v∈M ′

fSi−1
(v)

)
− α (by definition of M)

≥
(

1− 1

e

)(
f(S∗ ∪ Si−1)− f(Si−1)

k

)
− α. (by submodularity)

Unconditioning from Si−1 by taking the expectation over its choice proves the claim.

Proof of Theorem 3.5. Let f be any (possibly non-monotone) submodular function. We show by

induction that for every i = 0, . . . , k, we have

E [f(Si)] ≥
(

1− 1

e

)
· i
k
·
(

1− 1

k

)i−1

·OPT−iα. (11)

This clearly holds for the base case of i = 0. Assuming it holds in iteration i− 1, we calculate

E[f(Si)] = E[f(Si−1)] + E[fvi(Si−1)]

≥ E[f(Si−1)] +

(
1− 1

e

)(
E[f(S∗ ∪ Si−1)]− E[f(Si−1)]

k

)
− α (by Claim B.8)

≥ E[f(Si−1)] +

(
1− 1

e

)(
(1− 1

k )i−1 OPT−E[f(Si−1)]

k

)
− α (by Claim B.7)

=

(
1− 1

k

)
E[f(Si−1)] +

(
1− 1

e

)
·
(

1− 1

k

)i−1

· 1

k
·OPT−α

≥
(

1− 1

k

)(
1− 1

e

)
· i− 1

k
·
(

1− 1

k

)i−2

·OPT +

(
1− 1

e

)
·
(

1− 1

k

)i−1

· 1

k
·OPT−iα

(by the inductive hypothesis)

=

(
1− 1

e

)
· i
k
·
(

1− 1

k

)i−1

·OPT−iα.

Hence, in iteration k, we have

E [f(Sk)] ≥
(

1− 1

e

)
·
(

1− 1

k

)k−1

·OPT−kα ≥
(

1− 1

e

)
· 1

e
·OPT−kα

as we wanted to show.
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Now we consider the special case where f is monotone. In this case, we have

E[fvi(Si−1)] ≥
(

1− 1

e

)(
E[f(S∗ ∪ Si−1)]− E[f(Si−1)]

k

)
− α (by Claim B.8)

≥
(

1− 1

e

)(
OPT−E[f(Si−1)]

k

)
− α (by monotonicity).

Rearranging gives us

OPT−E [f(Si)] ≤
(

1− (1− 1/e)

k

)
· (OPT−E [f(Si−1)]) + α.

Recursively applying this bound yields

OPT−E[f(Si)] ≤
(

1− (1− 1/e)

k

)i
(OPT−E[f(S0)]) +

i−1∑
j=0

(
1− 1

k

)j
α

≤
(

1− (1− 1/e)

k

)i
OPT +iα.

Hence, we conclude

E[f(Sk)] ≥
[

1−
(

1− (1− 1/e)

k

)k]
OPT−kα

≥
(

1− e−(1−1/e)
)

OPT−kα.

Appendix C. Two-Stage Submodular Maximization Appendix

C.1 Proof of Theorem 4.1

Let St represent the set of chosen elements at step t. Also, we define T ti ⊆ St as the current solution

for function fi at step t. We also define Ati =
⋃

1≤j≤t T
t
i , i.e., Ati is the set of all the elements have

been in the set Ti till step t. Note that this set includes elements that have been in Ti at some point

and might be deleted at later steps. We first lower bound fi(T
t
i ) based on value of fi(A

t
i).

Lemma C.1. For all 1 ≤ i ≤ m, we have

fi(T
t
i ) ≥ α

α+ 1
fi(A

t
i).

109



Proof. We proof this lemma by induction. For the first k additions to set T ti , the two sets T ti and Ati

are exactly the same, i.e., we have fi(T
t
i ) = fi(A

t
i). Therefore the lemma is correct for them. Next

we show that lemma is correct for cases after the first k additions, i.e., when an incoming element

ut replaces one element of T t−1
i . We have the following lemma.

Lemma C.2. For 1 ≤ i ≤ m and all ut, we have:

∆i(u
t, T t−1

i ) ≥ fi(ut|At−1
i )− fi(T t−1

i )/k.

Proof. To prove this lemma we have the following

∆i(u
t, T t−1

i ) = fi(T
t−1
i + ut −Repi(u

t, T t−1
i ))− fi(T t−1

i )

(a)

≥
∑
u∈T t−1

i
fi(T

t−1
i + ut − u))− fi(T t−1

i )

k

=

∑
u∈T t−1

i
fi(T

t−1
i + ut − u)− fi(T t−1

i − u) + fi(T
t−1
i − u)− fi(T t−1

i )

k

(b)

≥
∑
u∈T t−1

i
fi(T

t−1
i + ut)− fi(T t−1

i )

k
+

∑
u∈T t−1

i
fi(T

t−1
i − u)− fi(T t−1

i )

k
(c)

≥ fi(u
t|T t−1

i )− fi(T t−1
i )/k

(d)

≥ fi(u
t|At−1

i )− fi(T t−1
i )/k.

Inequality (a) is true because Repi(u
t, T t−1

i ) is the element with the largest increment when it is

exchanged with ut. Therefore, it should be at least equal to the average of all possible exchanges.

Note that T t−1
i has at most k elements. Inequalities (b) and (d) result from submodularity of fi.

Also, from submodularity of fi, we have fi(T
t−1
i )− fi(∅) ≥

∑
u∈T t−1

i
fi(T

t−1
i )− fi(T t−1

i − u) which

results in inequality (c).

Now, assume Lemma C.1 is true for time t − 1, i.e., fi(T
t−1
i ) ≥ α

α+1fi(A
t−1
i ). We prove that it is

also true for time t. First note that if ut is not accepted by the algorithm for the i-th function then

T ti = T t−1
i and Ati = At−1

i ; therefore the lemma is true for t. If ut is chosen to be added to T t−1
i ,

from the definition of ∇(ut, T t−1
i ), we have ∆i(u

t, T t−1
i ) > α/k ·fi(T t−1

i ). From this fact and Lemma

C.2, we have:

fi(T
t
i )− fi(T t−1

i ) ≥ max{fi(ut|At−1
i )− fi(T t−1

i )/k, α/k · fi(T t−1
i )}

≥ α · (fi(ut|At−1
i )− fi(T t−1

i )/k) + α/k · fi(T t−1
i )

α+ 1

≥ α

α+ 1
· fi(ut|At−1

i ) =
α

α+ 1
·
[
fi(A

t
i)− fi(At−1

i )
]
→ fi(T

t
i ) ≥ α

α+ 1
· fi(Ati).
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Corollary 1. If ∆i(u
t, T t−1

i ) < α/k · fi(T t−1
i ) then we have:

fi(u
t|Ani )

(a)

≤ fi(u
t|At−1

i )
(b)

≤ α+ 1

k
· fi(T t−1

i )
(c)

≤ α+ 1

k
· fi(Tni ).

Proof. Inequality (a) is true because of submodularity of fi and the fact that At−1
i ⊆ Ani . Inequality

(b) concludes form Lemma C.2. Since fi(T
t
i ) is a nondecreasing function of t, then (c) is true.

Next, we use Lemmas C.1 and C.2 and Corollary 1, to prove the approximation factor of the

algorithm. Note that if at the end of algorithm |Sn| = `, then we have:

1

m

m∑
i=1

fi(T
n
i ) =

1

m

n∑
t=1

m∑
i=1

[
fi(T

t
i )− fi(T t−1

i )
]

=
1

m

n∑
t=1

1{ut∈Sn} · ∇i(ut, T ti ) ≥ OPT

β
. (12)

This is true because the additive value after adding an element to St is at least OPT
β` . Next consider

the case where |S| < `. First note that for an element ut ∈ Sm,`i , which does not belong to set Ani , we

have two different possibilities: (i) ∆i(u
t, T t−1

i ) < α/k ·fi(T t−1
i ), or (ii) ∆i(u

t, T t−1
i ) ≥ α/k ·fi(T t−1

i )

and 1
m

∑m
i=1∇i(ut, T t−1

i ) < OPT
β` . Therefore, we have

m∑
i=1

fi(S
m,`
i ) ≤

m∑
i=1

fi(Ani ) +
∑

ut∈Sm,`i \Ani

fi(u
t|Ani )


=

m∑
i=1

fi(A
n
i ) +

m∑
i=1

∑
ut∈Sm,`\Ani

1{ut∈Sm,`i } · f(ut|Ani )

=
m∑
i=1

fi(A
n
i ) +

m∑
i=1

∑
ut∈Sm,`

1{ut∈Sm,`i }·[
1{∆i(ut,T

t−1

i )<α/k·fi(T t−1

i )} · fi(ut|Ani )+

1{∆i(ut,T
t−1

i )≥α/k·fi(T t−1

i ) and
∑m
i=1
∇i(ut,T t−1

i )<OPT
β` }
· fi(ut|Ani )

]
. (13)

For the three terms on the rightmost side of Equation 13 we have the following inequalities. For the

first term, from Lemma C.1, we have:

m∑
i=1

fi(A
n
i ) ≤ α+ 1

α

m∑
i=1

fi(T
n
i ). (14)
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For the second term, we have:

m∑
i=1

∑
ut∈Sm,`

1{ut∈Sm,`i }·1{∆i(ut,T
t−1

i )<α/k·fi(T t−1

i )} · fi(ut|Ani )

(a)

≤
m∑
i=1

∑
ut∈Sm,`i

α+ 1

k
fi(T

n
i )

(b)

≤ (α+ 1) ·
m∑
i=1

fi(T
n
i ). (15)

Inequality (a) is the result of Corollary 1. Inequality (b) is true because we have at most k elements

in set Sm,`i . Note that for ut with
∑m
i=1∇i(ut, T t−1

i ) < OPT
β` we have:

1

m

m∑
i=1

1{ut∈Sm,`i } · 1{∆i(ut,T
t−1

i )≥α/k·fi(T t−1

i )}
[
fi(u

t|At−1
i )− fi(T t−1

i )/k
]

(a)

≤ 1

m

m∑
i=1

1{ut∈Sm,`i }∇i(ut, T t−1
i )

(b)

≤ 1

m

m∑
i=1

∇i(ut, T t−1
i )

<
OPT

β`
. (16)

Inequality (a) results from Lemma C.2 and (b) is true because ∇i(ut, T t−1
i ) ≥ 0 for 1 ≤ i ≤ m.

Therefore, from Equation 16 and submodularity of fi and its non-negativity, we have:

1

m

m∑
i=1

1{ut∈Sm,`i } · 1{∆i(ut,T
t−1

i )≥α/k·fi(T t−1

i ) and
∑m
i=1
∇i(ut,T t−1

i )<OPT
β` }
· fi(ut|Ani )

≤ OPT

β`
+

1

km
·
m∑
i=1

1{ut∈Sm,`i } · fi(Tni ).

Consequently,

1

m

m∑
i=1

∑
ut∈Sm,`

1{ut∈Sm,`i }·1{∆i(ut,T
t−1

i )≥α/k·fi(T t−1

i ) and
∑m
i=1
∇i(ut,T t−1

i )<OPT
2` }
· fi(ut|Ani )

≤ 1

m

∑
ut∈Sm,`

[
OPT

β`
+

1

k
·
m∑
i=1

1{ut∈Sm,`i } · fi(Tni )

]
≤ OPT

β
+

1

m

m∑
i=1

fi(T
n
i ).

(17)

Using Equations 14, 15, and 17 we have:

OPT =
1

m

m∑
i=1

fi(S
m,`
i ) ≤ α+ 1

α
· 1

m

m∑
i=1

fi(T
n
i ) + (α+ 1) · 1

m

m∑
i=1

fi(T
n
i ) +

OPT

β
+

1

m

m∑
i=1

fi(T
n
i ).

(18)
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This results in

α · (β − 1) ·OPT

β · ((α+ 1)2 + α)
≤ 1

m

m∑
i=1

fi(T
n
i ). (19)

Combination of Equations 12 and 19 proves the theorem.

C.2 Proof of Theorem 4.4

We first prove Lemmas 4.2 and 4.3.

Proof of Lemma 4.2: The lower bound is trivial. For the upper bound we have

OPT =
1

m

m∑
i=1

∑
u∈Sm,`i

fi(u) ≤ 1

m

∑
u∈Sm,`

m∑
i=1

fi(u) ≤ ` · δ.

Proof of Lemma 4.3: We have

1

m

m∑
i=1

∇i(ut, T t−1
i )

(a)

≤ 1

m

m∑
i=1

fi(u
t|T t−1

i )
(b)

≤ 1

m

m∑
i=1

fi(u
t)

(c)

≤ δt.

For inequality (a) first note that fi(u
t|T t−1

i ) ≥ 0; therefore it suffices to show that for all∇i(ut, T t−1
i ) >

0 we have ∇i(ut, T t−1
i ) ≤ fi(ut|T t−1

i ). So, for ∇i(ut, T t−1
i ) > 0, consider the two following cases: (i)

if |T t−1
i | < k, then∇i(ut, T t−1

i ) = fi(u
t|T t−1

i ). (ii) if |T t−1
i | < k, then∇i(ut, T t−1

i ) = ∆i(u
t, T t−1

i ) =

fi(T
t−1
i +ut−Repi(u

t, T t−1
i ))−fi(T t−1

i ) ≤ f(T
t−1
i +ut)−fi(T t−1

i ), where the last inequality follows

from the monotonicity of fi. Inequality (b) results from the submodularity of fi. The inequality (c)

follows from the definition of δt.

Proof of Theorem 4.4: Note that there exists an instance of algorithm with a threshold τ in Γn

such that OPT
1+ε ≤ τl ≤ OPT. For this instance, it suffices to replace OPT with OPT

1+ε in the proof

of Theorem 4.1. This proves the approximation guarantee of the theorem. For each instance of the

algorithm we keep at most ` items. Since we have O( log `
ε ) thresholds, the total memory complexity

of the algorithm is O( ` log `
ε ). The update time per each element ut for each instance is O(km).

This is true because we compute the gain of exchanging ut with all the k elements of T t−1
i for each

function fi, 1 ≤ i ≤ m. Therefore, the total update time per elements is O(km log `
ε ).
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C.3 Proof of Theorem 4.5

First recall that we defined:

Sm,` = arg max
S⊆Ω,|S|≤`

1

m

m∑
i=1

max
|T |≤k,T⊆S

fi(T ),

and

Sm,`i = arg max
S⊆Sm,`,|S|≤k

fi(S) and OPT =
1

m

m∑
i=1

fi(S
m,`
i ).

Let V(1/M) denote the distribution over random subsets of Ω where each element is picked indepen-

dently with a probability 1
M . Define vector p ∈ [0, 1]n such that for e ∈ Ω, we have

pe =

 PA∼V(1/M)[e ∈ Replacement-Greedy(A ∪ {e})] if e ∈ Sm,`,

0 otherwise.

We also define vector pi such that for e ∈ V, we have:

pie =

 pe if e ∈ Sm,`i ,

0 otherwise.

Denote by V l the set of elements assigned to machine l. Also, let Ol = {e ∈ Sm,` : e /∈

Replacement-Greedy(V l ∪ {e})}. Furthermore, define Oli = Ol ∩ Sm,`i . The next lemma plays a

crucial role in proving the approximation guarantee of our algorithm.

Lemma C.3. Let A ⊆ Ω and B ⊆ Ω be two disjoint subsets of Ω. Suppose for each element e ∈ B,

we have Replacement-Greedy(A ∪ {e}) = Replacement-Greedy(A). Then we have:

Replacement-Greedy(A ∪B) = Replacement-Greedy(A).

Proof. We proof lemma by contradiction. Assume

Replacement-Greedy(A ∪B) 6= Replacement-Greedy(A).

At each iteration the element with the highest additive value is added to set S. In Replacement-
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Greedy, the additive value of each element depends on sets Ti ⊆ S. Note that sets Ti ⊆ S are

deterministic functions of elements of S while considering their order of additions to S. Let’s assume

e is the first element such that Replacement-Greedy(A∪B) 6= Replacement-Greedy(A). First

note that e /∈ A. Also, we conclude Replacement-Greedy(A∪{e}) 6= Replacement-Greedy(A).

This contradicts with the assumption of lemma.

From the definition of set Ol and Lemma C.3, we have:

Replacement-Greedy(V l) = Replacement-Greedy(V l ∪Ol).

Lemma C.4. We have:

1

m

m∑
i=1

fi(T
l
i ) ≥ α ·

1

m

m∑
i=1

fi(O
l
i),

where α is the approximation factor of Replacement-Greedy.

Proof. Let OPTli denote the optimum value for function fi on the dataset V l ∪Ol for the two-stage

submodular maximization problem. We have:

1

m

m∑
i=1

fi(T
l
i ) ≥ α ·

1

m

m∑
i=1

OPTli ≥ α ·
1

m

m∑
i=1

fi(O
l
i).

This is true because (i) Replacement-Greedy(V l) = Replacement-Greedy(V l ∪ Ol), (ii) ap-

proximation guarantee of Replacement-Greedy is α, and (iii) Ol and {Oli} is a valid solution

for the two-stage submodular maximization problem over set V l ∪ Ol. Assume f−i is the Lovász

extension of a submodular function fi.

Lemma C.5 (Lemma 1, Barbosa et al. (2015)). Let A be random set, and suppose that E[1A] = λ ·p

for a constant value of λ ∈ [0, 1]. Then, E[f(S)] ≥ λ · f−(p).

For each element e ∈ Sm,` we have:

P[e ∈ Ol] = 1− P[e /∈ Ol] = 1− pe,

E[1Ol ] = 1Sm,` − p,

E[1Oli ] = 1Sm,`i
− pi.
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Therefore, we have:

E[
1

m

m∑
i=1

fi(T
l
i )] ≥ α · E[

1

m

m∑
i=1

fi(O
l
i)] ≥

α

m
·
m∑
i=1

f−i (1Sm,`i
− pi).

Furthermore, for each element e ∈ Sm,` we have

P[e ∈
⋃
l

Sl|e is assigned to machine l] = P[e ∈ Replacement-Greedy(V l)|e ∈ V l]

= PA∼V(1/M)[e ∈ Replacement-Greedy(A)|e ∈ A]

= PB∼V(1/M)[e ∈ Replacement-Greedy(B ∪ {e})]

= pe.

Therefore, we have

E[
1

m

m∑
i=1

fj(T
′
i )] ≥ α · E[

1

m

m∑
i=1

fi(
⋃
l

Sl ∩ Sm,`i )] ≥ α

m
·
m∑
i=1

f−i (pi)

To Sum up above, we have:

E[
1

m

m∑
i=1

fj(T
∗
i )] ≥ α

m

m∑
i=1

f−j (1Sm,`i
− pi), (20)

E[
1

m

m∑
i=1

fi(T
∗
i )] ≥ α

m

m∑
i=1

f−i (pi). (21)

And therefore we have:

E[
1

m

m∑
i=1

fi(T
∗
i )] ≥ α

2m

m∑
i=1

[
f−i (pi) + f−i (1Sm,`i

− pi)
] (a)

≥ α

2m

m∑
i=1

f−i (1Sm,`i
) ≥ α

2m

m∑
i=1

fi(S
m,`
i ).

The inequality (a) results from the convexity of Lovász extensions for submodular functions. Note

that the approximation guarantee of Replacement-Greedy is α = 1
2 (1− 1

e2 ) (Stan et al., 2017).

C.4 Proof of Theorem 4.6

In this section, we first outline Distributed-Fast (Algorithm 18) and then prove Theorem 4.6.
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Algorithm 18 Distributed-Fast

1: For 1 ≤ l ≤ M set V l = ∅
2: for e ∈ Ω do
3: Assign e to a set V l chosen uniformly at random

4: For 1 ≤ l ≤ M sort elements of V l based on a universal predefined ordering between elements
. Any consistent ordering between elements of Ω is valid.

5: Let V l be the elements assigned to machine l
6: Run Replacement-Pseudo-Streaming on each machine l to obtain {Slτ} and {T lτ,i} for

1 ≤ i ≤ m and relevant values of τ on that machine
7: l∗, τ∗ ← arg maxl,τ

1
m

∑m
i=1 fi(T

l
τ,i)

8: S, {Ti} ← Replacement-Greedy(
⋃
l

⋃
τ S

l
τ )

9: Return: arg max{ 1
m

∑m
i=1 fi(Ti),

1
m

∑m
i=1 fi(T

l∗

τ∗i)}

The following lemma provides the equivalent of Lemma C.3 for Replacement-Pseudo-Streaming.

The rest of proof is exactly the same as the proof of Theorem 4.5 with the only difference that the

approximation guarantee of Replacement-Pseudo-Streaming is γ = 1
6+ε .

Lemma C.6. Let A ⊆ Ω and B ⊆ Ω be two disjoint subsets of Ω. Suppose for each element e ∈ B,

we have Replacement-Pseudo-Streaming(A∪{e}) = Replacement-Pseudo-Streaming(A).

Then we have

Replacement-Pseudo-Streaming(A ∪B) = Replacement-Pseudo-Streaming(A).

Proof. First note that because of the universal predefined ordering between elements of Ω, the

order of processing the elements would not change in different runs of Replacement-Pseudo-

Streaming. Also, in the streaming setting, if an element ut changes the set of thresholds Γt, then

ut would be picked by those newly instantiated thresholds. To show this, assume δt−1 < τ ≤ δt is

one of the newly instantiated thresholds. For τ , the sets {Tτ,i} are empty and we have:

τ ≤
m∑
i=1

∇i(ut|∅) =
m∑
i=1

fi(u
t) = δt.

Therefore, ut is added to all sets {Tτ,i}. For an element e ∈ B, we have two cases: (i) e has not

changed the thresholds when it is arrived, or (ii) it has instantiated new thresholds (e.g., a new

threshold τ) but non of them is in the final thresholds Γn; because if τ ∈ Γn, then we have e ∈ Snτ ,

and this contradicts with the definition of set B.

Now consider Replacement-Pseudo-Streaming(A ∪B). We prove the lemma by contradiction.
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Assume

Replacement-Pseudo-Streaming(A ∪B) 6= Replacement-Pseudo-Streaming(A).

Assume e is the first element of B which is picked by Replacement-Pseudo-Streaming(A ∪B)

for a threshold in Γn. From the above, we know that non of the thresholds Γn of this running

instance of the algorithm is instantiated when an element of B is arrived. So, when e is ar-

rived, all the thresholds of Γn which are instantiated so far are from elements of A. Also, since

the order of processing of elements are fixed, Replacement-Pseudo-Streaming(A ∪ B) and

Replacement-Pseudo-Streaming(A∪{e}) would pick the same set of element till the point e is

arrived. If e is picked by Replacement-Pseudo-Streaming(A ∪B) for a threshold τ ∈ Γn, then

Replacement-Pseudo-Streaming(A∪{e}) would also pick e for that threshold. This contradicts

with the definition of set B.

C.5 Replacement-Greedy

In this section, in order to make the current manuscript self-contained, we describe the Replacement-

Greedy from (Stan et al., 2017). We use this greedy algorithm in Section 4.1.7 as one of the building

blocks of our distributed algorithms.

We first define few necessary notations. The additive value of an element x to a set A from a function

fi is defined as follows:

Λi(x,A) =

 fi(x|A) if |A| < k,

max{0,∆i(x,A)} o.w.,

where ∆i(x,A) is defined in Equation 4. We also define:

Rep-Greedyi(x,A) =


∅ if |A| < k,

∅ ∆i(x,A) < 0,

Repi(x,A) o.w.,

where Repi(x,A) is defined in Equation 3. Indeed, Rep-Greedyi(x,A) represents the element

from set A which should be replaced with x in order to get the maximum (positive) additive gain,

where the cardinality constraint k is satisfied. Replacement-Greedy starts with empty sets S
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and {Ti}. In ` rounds, it greedily adds elements with the maximum additive gains
∑m
i=1 Λi(x, Ti)

to set S. If the gain of adding these elements (or exchanging with one element of Ti where there

exists k elements in Ti) is non-negative, we also update sets Ti. Replacement-Greedy is outlined

in Algorithm 19.

Algorithm 19 Replacement-Greedy

1: S ← ∅ and Ti ← ∅ for all 1 ≤ i ≤ m
2: for 1 ≤ j ≤ ` do
3: x∗ ≥ arg maxx∈Ω

∑m
i=1 Λi(x, Ti)

4: S ← S + x∗

5: for 1 ≤ i ≤ m do
6: if Λi(x

∗, Ti) > 0 then
7: Ti ← Ti + x∗ −Rep-Greedyi(x

∗, Ti)

8: Return: S and {Ti}

Appendix D. Submodular Streaming Appendix

D.1 Implications of Sieve-Streaming++

Recently, there has been several successful instances of using the idea of (Badanidiyuru et al.,

2014) for designing streaming algorithms for a wide range of submodular maximization problems.

In Section 4.2.3, we showed Sieve-Streaming++ (see Algorithm 9 and Theorem 4.7) reduces the

memory complexity of streaming submodular maximization to O(k). In this section, we discuss

how the approach of Sieve-Streaming++ significantly improves the memory complexity for several

important problems.

Random Order Streams Norouzi-Fard et al. (2018) studied streaming submodular maximization

under the assumption that elements of a stream arrive in random order. They introduced a streaming

algorithm called SALSA with an approximation guarantee better than 1/2. This algorithm uses

O(k log(k)) memory. In a very straightforward way, similarly to the idea of Sieve-Streaming

for lower bounding the optimum value, we are able to improve the memory complexity of this

algorithm to O(k). Furthermore, Norouzi-Fard et al. (2018) introduced a p-pass algorithm (p ≥ 2)

for submodular maximization subject to a cardinality constraint k. We can also reduce the memory

of this p-pass algorithm by a factor log(k).
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Deletion-Robust Mirzasoleiman et al. (2017) have introduced a streaming algorithm for the

deletion-robust submodular maximization. Their algorithm provides a summary S of sizeO(kd log(k)/ε)

where it is robust to deletion of any set D of at most d items. Kazemi et al. (2018) were able to

reduce the size of the deletion-robust summary to O(k log(k)/ε+ d log2(k)/ε3). The idea of Sieve-

Streaming++ for estimating the value of OPT reduces the memory complexities of these two algo-

rithms to O(kd/ε) and O(k/ε+ d log2(k)/ε3), respectively. It is also possible to reduce the memory

complexity of STAR-T-GREEDY (Mitrovic et al., 2017b) by at least a factor of log(k).

Two-Stage Mitrovic et al. (2018b) introduced a streaming algorithm called Replacement-Streaming

for the two-stage submodular maximization problem which is originally proposed by (Balkanski et al.,

2016; Stan et al., 2017). The memory complexity of Replacement-Streaming is O( ` log `
ε ), where

` is the size of the produced summary. Again, by applying the idea of Sieve-Streaming++ for

guessing the value of OPT and analysis similar to the proof of Theorem 4.7, we can reduce the

memory complexity of the streaming two-stage submodular maximization to O( `ε ).

Streaming Weak Submodularity Weak submodular functions generalize the diminishing re-

turns property.

Definition D.1 (Weakly Submodular (Das and Kempe, 2011)). A monotone and non-negative set

function f : 2V → R≥0 is γ–weakly submodular if for each sets A,B ⊂ V , we have

γ ≤
∑
e∈A\B f({e} | B)

f(A | B)
,

where the ratio is considered to be equal to 1 when its numerator and denominator are 0.

It is straightforward to show that f is submodular if and only if γ = 1. In the streaming context

subject to a cardinality constraint k, Elenberg et al. (2017) designed an algorithm with a constant

factor approximation for γ–weakly submodular functions. The memory complexity of their algorithm

is O(k log k
ε ). By adopting the idea of Sieve-Streaming++, we could reduce the memory complexity

of their algorithm to O(kε ).

Table 5 provides a summary of algorithms that we could significantly improve their memory com-

plexity, while their approximation factors are maintained.
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Problem Algorithm Memory Improved Memory

Random stream Salsa O(k log(k)) O(k)
Random stream P-PASS O(k log(k)/ε) O(k/ε)

Weak submodular Streak O(k log(k)/ε) O(k/ε)

Deletion-Robust ROBUST O(kd log(k)/ε) O(kd/ε)
Deletion-Robust ROBUST-STREAMING O(k log(k)/ε + d log

2
(k)/ε3) O(k/ε + d log

2
(k)/ε3)

Two-Stage REPLACEMENT-STREAMING O(` log(`)/ε) O( /̀ε)

Table 5: Streaming algorithms for several other submodular maximization problems. Salsa and
P-PASS are due to Norouzi-Fard et al. (2018), Streak is due to Elenberg et al. (2017), ROBUST
is due to Mirzasoleiman et al. (2017), ROBUST-STREAMING is due to Kazemi et al. (2018), and
REPLACEMENT-STREAMING is due to Mitrovic et al. (2018b).

D.2 Proof of Theorem 4.7

Proof. Approximation guarantee The approximation ratio is proven very similar to the approx-

imation guarantee of Sieve-Streaming Badanidiyuru et al. (2014).

Let’s define S∗ = arg maxA⊆V,|A|≤k f(A), OPT = f(S∗) and τ∗ = OPT
2k . We further define ∆ =

maxe∈V f({e}). It is easy to observe that max{∆, LB} ≤ OPT ≤ k∆ and there is a threshold τ

such that (1− ε)τ∗ ≤ τ < τ∗. Now consider the set Sτ . Sieve-Streaming++ adds elements with a

marginal gain at least τ to the set Sτ . We have two cases:

• |Sτ | = k : We define Sτ = {e1, · · · , ek} where ei is the i-th picked element. Furthermore, we

define Sτ,i = {e1, · · · , ei}. We have

f(Sτ ) =

k∑
i=1

f({ei} | Sτ,i−1) ≥ kτ ≥ (
1

2
− ε) ·OPT.

This is true because the marginal gain of each element at the time it has been added to the

set Sτ is at least τ∗.

• |Sτ | < k : We have

OPT ≤ f(S∗ ∪ Sτ ) = f(Sτ ) + f(S∗ | Sτ )
(a)

≤ f(Sτ ) +
∑

e∈S∗\Sτ

f({e} | Sτ )
(b)

≤ f(Sτ ) + kτ∗

= f(Sτ ) +
OPT

2
,

where (a) is correct because f is a submodular function, and we have (b) because each element

of S∗ that is not picked by the algorithm has had a marginal gain of less than τ < τ∗.

Memory complexity Let Sτ be the set we maintain for threshold τ . We know that OPT is at
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least LB = maxτ f(Sτ ) ≥ maxτ (|Sτ | × τ) because the marginal gain of an element in set Sτ is at

least τ . Note that LB is the best solution found so far. Given this lower bound on OPT (which is

potentially better than ∆ if we have picked enough items), we can dismiss all thresholds that are

too small, i.e., remove all thresholds τ < LB
2k ≤ OPT

2k . For any remaining τ ≥ LB
2k , we know that

|Sτ | is at most LB
τ . We consider two sets of thresholds: (i) LB

2k ≤ τ ≤ LB
k , and (ii) τ ≥ LB

k . For the

first group of thresholds, the bound on |Sτ | is the trivial upper bound of k. Note that we have

log1+ε(2) ≤ dlog(2)/εe of such thresholds. For the second group of thresholds, as we increase τ , for

a fixed value of LB the upper bound on the size of Sτ gets smaller. Indeed, these upper bounds are

geometrically decreasing values with the first term equal to k. And they reduce by a coefficient of

(1+ ε) as thresholds increase by a factor of (1+ ε). Therefore, we can bound the memory complexity

by

Memory complexity ≤
⌈
k log(2)

ε

⌉
+

log1+ε(k)∑
i=0

k

(1 + ε)i
= O

(
k

ε

)
.

Therefore, the total memory complexity is O(kε ).

Query complexity For every incoming element e, in the worst case, we should compute the

marginal gain of e to all the existing sets Sτ . Because there is O( log k
ε ) of such sets (the num-

ber of different thresholds), therefore the query complexity per element is O( log k
ε ).

D.3 Proof of Theorem 4.8

Proof. Approximation Guarantee: Assume B is the set of elements buffered from the stream V .

Let’s define S∗ = arg maxA⊆V,|A|≤k f(A), OPT = f(S∗) and τ∗ = OPT
2k . Similar to the proof of

Theorem 4.7, we can show that Batch-Sieve-Streaming++ considers a range of thresholds such

that for one of them (say τ) we have OPT(1−ε)
2k ≤ τ < OPT

2k . In the rest of this proof, we focus on τ

and its corresponding set of picked items Sτ . For set Sτ we have two cases:

• if |Sτ | < k, we have:

OPT ≤ f(S∗ ∪ Sτ ) = f(Sτ ) + f(S∗ | Sτ )
(a)

≤ f(Sτ ) +
∑

e∈S∗\Sτ

f({e} | Sτ )
(b)

≤ f(Sτ ) + kτ∗

= f(Sτ ) +
OPT

2
,

where inequality (a) is correct because f is a submodular function. And inequality (b) is

122



correct because each element of the optimal set S∗ that is not picked by the algorithm, i.e., it

had discarded in the filtering process, has had a marginal gain of less than τ < τ∗.

• if |Sτ | = k: Assume the set Sτ of size k is sampled in ` iterations of the while loop in Lines

2–18 of Algorithm 11, and Ti is the union of sampled batches in the i-th iteration of the while

loop. Furthermore, let Ti,j denote the j-th sampled batch in the i-th iteration of the while

loop. We define Sτ,i,j =
⋃
i,j Ti,j , i.e, Sτ,i,j is the state of set Sτ after the j-th batch insertion

in the i-th iteration of the while loop. We first prove that the average gain of each one of these

sets Ti to the set Sτ is at least (1− 2ε) · |Ti|.

To lower bound the average marginal gain of Ti, for each Ti,j we consider three different cases:

– the while loop breaks at Line 7 of Algorithm 11: We know that the size of all Ti,j is one

in this case. It is obvious that f(Ti,j | Sτ,i,j−1) ≥ (1− ε) · τ.

– Threshold-Sampling passes the first loop and does not break at Line 16, i.e., it con-

tinues to pick items till Sτ = k or the buffer memory is empty: again it is obvious that

f(Ti,j | Sτ,i,j−1) ≥ (1− ε) · τ · |Ti,j |

This is true because when set Ti,j is picked, it has passed the test at Line 15. Note that

it is possible the algorithm breaks at Line 14 without passing the test at Line 15. If the

average marginal gain of the sampled set Ti,j is more than (1 − ε) · τ then the analysis

would be exactly the same as the current case. Otherwise, we handle it similar to the

next case where the sampled batch does not provide the required average marginal gain.

– it passes the first loop and breaks at Line 16. We have the two following observations:

1. in the current while loop, from the above-mentioned cases, we conclude that the

average marginal gain of all the element picked before the last sampling is at least

(1− ε) · τ , i.e.,

∀r, 1 ≤ r < j : f(Ti,r | Sτ,i,r−1) ≥ (1− ε) · τ · |Ti,r|.

2. the number of elements which are picked at the latest iteration of the while loop

is at most ε fraction of all the elements picked so far (in the current while loop),

i.e., |Ti,j | ≤ ε · |⋃1≤r<j Ti,r| and |Ti| ≤ (1 + ε) · |⋃1≤r<j Ti,r|. Therefore, from the
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monotonicity of f , we have

f(
⋃

1≤r≤j

Ti,r | S) ≥ f(
⋃

1≤r<j

Ti,r | S) ≥ (1− ε) · τ · |
⋃

1≤r<j

Ti,r|

≥ |Ti| · τ · (1− ε)
(1 + ε)

≥ (1− 2ε) · τ · |Ti|.

To sum-up, we have

f(Sτ ) =
∑̀
i=1

f(Ti | Sτ,i−1) ≥
∑̀
i=1

(1− 2ε) · τ · |Ti| = (1− 2ε) · τ · k ≥
(

1

2
− 3ε

2

)
·OPT.

Memory complexity In a way similar to analyzing the memory complexity of Sieve-Streaming++,

we conclude that the required memory of Batch-Sieve-Streaming++ in order to store solutions

for different thresholds is also O(kε ). Since we buffer at most B items, the total memory complexity

is O(B + k
ε ).

Adaptivity Complexity of Threshold-Sampling To guarantee the adaptive complexity of

our algorithm, we first upper bound the expected number of iterations of the while loop in Lines

2–18 of Algorithm 11.

Lemma D.1. For any constant ε > 0, the expected number of iterations in the while loop of Lines

2–18 of Threshold-Sampling is O(log(|B|)) where B is the set of buffered elements passed to

Threshold-Sampling.

Before, proving Lemma D.1, we discuss how this lemma translates to the total expected adaptivity

of Batch-Sieve-Streaming++.

There are at most d 1
ε e + log1+ε k = O( log k

ε ) adaptive rounds in each iteration of the while loop

of Algorithm 11. So, from Lemma D.1 we conclude that the expected adaptive complexity of

each call to Threshold-Sampling is O( log(|B|) log(k)
ε ). To sum up, the general adaptivity of the

algorithm takes its maximum value when the number of times a buffer gets full is the most, i.e.,

when |B| = Threshold× B for N
Threshold×B times. We assume Threshold is constant. Therefore, the

expected adaptive complexity is O(N log(B) log(k)
Bε ).

Proof of Lemma D.1

Proof. Since we are only adding elements to S, using submodularity the marginal value of any
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element x to S, i.e. f(x | S), is decreasing. Therefore, once an element is removed from the buffer

B, it never comes back. As a result, the set B is shrinking over time. When B becomes empty,

the algorithm terminates. Therefore it suffices to show that in every iteration of the while loop, a

constant fraction of elements will be removed from B in expectation. The rest of the analysis follows

by analyzing the expected size of B over time and applying Markov’s inequality.

We note that to avoid confusion, we call one round of the while loop in Lines 3–18 of Threshold-

Sampling an iteration. There are two other internal for loops at Lines 4–10 and Lines 11–18. Later

in the proof, we call each run of these for loops a step. There are d 1
ε e steps in the first for loop and

O(log(k)) steps in the second.

If an iteration ends with growing S into a size k set, that is going to be the final iteration as the

algorithm Threshold-Sampling because the algorithm terminates once k elements are selected.

So we focus on the other case. An iteration breaks (finishes) either in the first for the loop at

Lines 4–10 or in the second for loop of Lines 11–18. We say an iteration fails if after termination

less than ε/2 fraction of elements in B is removed. For iteration `, let B` be the set B at Line 3

at the beginning of this iteration. So the first set B1 consists of all the input elements passed to

Threshold-Sampling. So we can say that an iteration ` fails if |B`+1| is greater than (1−ε/2)·|B`|.

Failure of an iteration can happen in any of the d 1
ε e+O(log(k)) steps of the two for loops. For each

step 1 ≤ z ≤ d 1
ε e+O(log(k)), we denote the probability that the current iteration is terminated at

step z at a failed state with Pz. The probability that an iteration will not fail can then be written

as ∏
z

(1− Pz).

In the rest of the proof, we show that this quantity is at least a constant for any constant ε > 0.

First, we show that at any of the d 1
ε e steps of the first for loop, the probability of failing is less than

ε/2. Let us consider step 1 ≤ z ≤ d 1
ε e. We focus on the beginning of step z and upper bound Pz for

any possible outcome of the previous steps 1, · · · , z − 1. Let S be the set of selected elements in all

the first z − 1 steps. If at least ε/2 fraction of elements in B` has a marginal value less than τ to S,

we can say that the iteration will not fail for the rest of the steps for sure (with probability 1). We

note that as S grows the marginal values of elements to it will not increase, so at least ε/2 fraction

of elements will be filtered out independent of which step the process terminates.

So we focus on the case that less than ε/2 fraction of elements in B` have marginal value less than

τ to S. Since, in the first loop, we pick one of them randomly and look at its marginal value as a
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test to whether terminate the iteration or not, the probability of termination at this step z is not

more than ε/2 and therefore Pz is also at most ε/2.

In the second for loop, at Lines 11–18, we have a logarithmic number of steps and we can upper

bound the probability of terminating the iteration in a failed state at any of these steps in a similar

way. The main difference is that instead of sampling one random element from B, we pick t random

elements and look at their average marginal value together as a test to whether terminate the current

iteration or not.

We want to upper bound the probability of terminating the iteration in a step z > d 1
ε e at a failed

state. This will happen if at the step z the Threshold-Sampling algorithm picks a random subset

T with

• f(T | S)

|T | ≤ (1− ε)τ , and

• also less than ε/2 fraction of elements in B` has a marginal value less than τ to T ∪ S.

We look at the process of sampling T as a sequential process in which we pick t random elements

one by one. We can call each of these t parts a small random experiment. We note that the first

property above holds only if in at least εt of these smaller random experiments the marginal value

of the selected element to the current set S is below τ . We also assume that we add the selected

elements to S as we move on. We simulate this random process with a binomial process of tossing t

independent coins. If the marginal value of the i-th sampled element to S is at least τ , we say that

the associated coin toss is a head. Otherwise, we call it a tail. The probability of a tail depends on

the fraction of elements in B` with marginal value less than τ to S. If this fraction at any point is at

least ε/2, we know that the second necessary property for a failed iteration does not hold anymore

and will not hold for the rest of the steps. Therefore the failure happens only if we face at least εt

tails each with probability at most ε/2. The rest of the analysis is applying simple concentration

bounds for different values of t.

So we have a binomial distribution with t trials each with head probability at least 1− ε/2, and we

want to upper bound the probability that we get at least εt tails. The expected number of tails is

not more than εt/2 so using Markov’s inequality, the probability of seeing at least εt tails is at most

0.5. Furthermore, for larger values of t we can have much better concentration bounds.

Using Chernoff type bounds in Lemma D.2, we know the probability of observing at least εt tails is

not more than:
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Pz ≤ Pr(tails− εt/2 ≥ εt/2) ≤ e−εt/10.

As we proceed in steps, the number of samples t grows geometrically. Consequently, the failure

probability declines exponentially (double exponential in the limit).

So the number of steps it takes to reach the failure probability declining phase is a function of ε

and therefore it is a constant number. We conclude that for any constant ε > 0, the probability

of not failing in an iteration, i.e.,
∏
z(1 − Pz), is lower bounded by a constant ζε > 0. Since any

iteration will terminate eventually, we can say that for any iteration with constant probability an

ε/2 fraction of elements will be filtered out of B. So the expected size of B after X iterations

will be at most 2−Ω(X)n where n is the number of input elements at the beginning of Threshold-

Sampling. So the probability of having more than C log(|B|) iterations decreases exponentially with

C for any coefficient C using Markov’s inequality which means the expected number of iterations is

O(log(|B|)).

Lemma D.2 (Chernoff bounds, Bansal and Sviridenko (2006)). Suppose X1, . . . , Xn are binary

random variables such that Pr(Xi = 1) = pi. Let µ =
∑n
i=1 pi and X =

∑n
i=1Xi. Then for any

a > 0, we have

Pr(X − µ ≥ a) ≤ e−amin( 1

5
, a

4µ ).

Moreover, for any a > 0, we have

Pr(X − µ ≤ −a) ≤ e− a
2

2µ .

D.4 Proof of Theorem 4.9

For m different data streams, assume Bi is the set of elements buffered from the i-th stream. We

define B to be the union of all elements from all streams. The communication cost of Batch-Sieve-

Streaming++ in the multi-source setting is the total number of elements sampled (in a distributed

way) from all sets {Bi}1≤i≤m in Lines 5 and 13 of Algorithm 11.

As a result, we can conclude that the communication cost is at most twice the number of elements

has been in a set Sτ at a time during the run of the algorithm. To see the reason for this argument,

note that because the filtering step happens just before the for loop of Lines 4–10, the first picked

sample in this for loop always passes the test and is added to Sτ . Furthermore, all the items sampled
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at Line 13, irrespective of their marginal gain, are added to Sτ . So, in the worst case scenario, the

communication complexity is maximum when the for loop breaks always at the second instance

of the sampling process of Line 5 (after one successful try). Therefore, we only need to upper

bound the total number of elements which at some point has been in a set Sτ at one of the calls to

Threshold-Sampling.

The first group of thresholds the Batch-Sieve-Streaming++ algorithm considers the interval

[∆0/(2k),∆0], where in the beginning we have LB = ∆0. Following the same arguments as the

proof of Theorem 4.7, we can show that if neither LB nor ∆ changes, the total number of elements

in sets {Sτ} is O(kε ). We define ∆max to be the largest singleton element in the whole data streams.

The number of times the interval of thresholds changes because of the change in ∆ is log1+ε(∆max/∆0).

Furthermore, by changes in LB some thresholds and their corresponding sets are deleted and new

elements might be added. The number of times LB changes is upper bounded by log1+ε(OPT/∆0).

Note that we have ∆max ≤ OPT. From the fact that the number of changes in the set of thresholds

is upper bounded by log1+ε(∆max/∆0) = O( log
ε ) and the number of elements in {Sτ} at every step of

the algorithm is O(ke ), we conclude the total communication cost of Batch-Sieve-Streaming++

is O(k log
ε2 ).

D.5 Twitter Dataset Details

To clean the data, we removed punctuation and common English words (known as stop words, thus

leaving each individual tweet as a list of keywords with a particular timestamp. To give additional

value to more popular posts, we also saved the number of retweets each post received.

Therefore, any individual tweet t consists of a set of keywords Kt and a value vt that is the number

of retweets divided by the number of words in the post.

A set of tweets T can be thought of as a list of (keyword, score) pairs. The keywords KT in a set

T is simply a union of the keywords of the tweets in T:

KT =
⋃
t∈T

Kt

The score sk of each keyword k ∈ KT is simply the sum of the values of posts containing that
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keyword. That is, if Tk ⊆ T is the subset of tweets in T containing the keyword k, then:

sk =
∑
t∈Tk

vt

Therefore, we define our submodular function f as follows:

f(T ) =
∑
k∈KT

√
sk

Intuitively, we sum over all the keyword scores because we want our set of tweets to cover as many

high-value keywords as possible. However, we also use the square root to introduce a notion of

diminishing returns because once a keyword already has a high score, we would prefer to diversify

instead of further picking similar tweets.

Function Definition Consider a function f defined over a ground set V of items. Each item e ∈ V

consists of a positive value vale and a set of `e keywords We = {we,1, · · · , we,`e} from a general set of

keywords W. The score of a word w ∈We for an item e is defined by score(w, e) = vale. If w /∈We,

we define score(w, e) = 0. For a set S ⊆ V the function f is defined as follows:

f(S) =
∑
w∈W

√∑
e∈S

score(w, e). (22)

Lemma D.3. The function f defined in Eq. (22) is non-negative and monotone submodular.

Proof. The not-negativity and monotonicity of f are trivial. For two sets A ⊂ B and e ∈ V \B we

show that

f({e} ∪A)− f(A) ≥ f({e} ∪B)− f(B).

To prove the above inequality, assume We = {we,1, · · · , we,`e} is the set of keywords of e. For a

keyword we,i define awe,i =
∑
u∈A score(we,i, u) and bwe,i =

∑
u∈B score(we,i, u). It is obvious that

awe,i ≤ bwe,i . It is straightforward to show that

√
awe,i + score(we,i, e)−√awe,i ≥

√
bwe,i + score(we,i, u)−

√
bwe,i .

If sum over all keywords in We then the submodularity of f is proven.
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Figure 22: Single-source streaming results on the Twitter summarizaton task. In (a) and (b), ε = 0.5.
In (c) and (d), k = 50.

D.6 More Experimental Results

D.6.1 Single-Source Experiments

Here we present the set of graphs that we displayed in Figures 13a through 13d, except here they

are run on the Twitter dataset instead. For the most part, they are showing the same trends we saw

before. Sieve-Streaming++ has the exact same utility as Sieve-Streaming, which is better than

Preemption-Streaming. We also see the memory requirement of Sieve-Streaming++ is much

lower than that of Sieve-Streaming, as we had hoped.

The only real difference is in the shape of the utility curve as ε varies. In Figure 13b, the utility

was decreasing as ε increased, which is not necessarily the case here. However, this is relatively

standard because changing ε completely changes the set of thresholds kept by Sieve-Streaming++,

so although it usually helps the utility, it is not necessarily guaranteed to do so.

Also, note that we only went up to k = 60 in this experiment because Preemption-Streaming
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was prohibitively slow for larger k.

D.6.2 Multi-Source Experiments
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Figure 23: Additional multi-source graphs. (a) and (b) are additional graphs for the Twitter dataset,
this time with ε = 0.6 and k = 50. (c) through (f) are the equivalent of Figures 13e through 13h,
but for the YouTube dataset. Unless they are being varied on the x-axis, we set ε = 0.25, B = 100,
and k = 100.

In Figure 13e, Sieve-Streaming++ had the best utility performance. In Figure 23a, we set k = 50

and ε = 0.6 and now we see that Batch-Sieve-Streaming++ and Sample-One-Streaming have
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higher utility, and that this utility increases as the buffer size increases. However, in this case too,

the main message is that the utilities of the three algorithms are comparable, but Batch-Sieve-

Streaming++ uses the fewest adaptive rounds (Figure 13f).

In Figures 23c through 23f, we display the same set of graphs as Figures 13e through 13h, but for the

YouTube experiment. In the YouTube experiment, it is more difficult to select a set of items that is

significantly better than random, so we need to use a smaller value of ε. We see that for smaller ε, the

difference in adaptive rounds between Batch-Sieve-Streaming++ and Sample-One-Streaming

is smaller. This is consistent with our results because the number of adaptive rounds required by

Sample-One-Streaming does not change much with ε, while the number of adaptive rounds of

Batch-Sieve-Streaming++ increases as ε gets smaller.

Appendix E. Submodularity on Hypergraphs Appendix

E.1 Proof of Theorem 5.1

In this section we prove Theorem 5.1, however, before we get into the proof, let us first recall the

theorem itself.

Theorem 5.1. The approximation ratio of Algorithm 12 is at least 1−e−(1− 1
k

)

2din+1 .

We begin the proof of the theorem by defining some additional notation. First, let ` be the number

of iterations completed by the main loop of Algorithm 12, i.e., the number of iterations in which σ

is updated. Then, for every 0 ≤ s ≤ `, let σs be the value of σ after s iterations of this loop have

been performed. In other words, σ0 is the initial value of σ when we first get to the loop, σ1 is the

value of σ at the end of the first iteration of the loop, and so on. Note that σ` is the output of

Algorithm 12. Additionally, we also denote by es and Es, for every 1 ≤ s ≤ `, the values assigned

to the variables eij and E , respectively, at iteration number s of the above loop. Finally, we also

define `′ as the real number of iterations performed by the above loop. Notice that `′ = ` unless the

algorithm exits the loop because E = ∅, in which case `′ = `+ 1 and we define E`′ = ∅.

Observation E.1. For every 1 ≤ s ≤ `, f(σs)− f(σs−1) ≥ h(es | E(σs−1)).

Proof. Notice that the way σ is updated in each iteration of Algorithm 12 guarantees that es ∈

E(σs) \ E(σs−1). Moreover, since σs−1 is a prefix of σs, we also get E(σs−1) ⊆ E(σs). Thus,

f(σs)− f(σs−1) = h(E(σs))− h(E(σs−1)) ≥ h(E(σs−1) + es)− h(E(σs−1)) = h(es | E(σs−1)) ,
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where the inequality follows from the monotonicity of h.

Let σ∗ denote an arbitrary (but fixed) optimal sequence. We now need to prove a few properties of

σ∗.

Observation E.2. |E(σ∗)| ≤ dink.

Proof. Observe that σ∗ contains at most k vertices because it is feasible. This means that there can

be at most dink arcs that end in a vertex of σ∗, which implies the observation since every arc of

E(σ∗) must end at a vertex of σ∗.

The next lemma studies the change in the value of (E(σ∗)∩Es)∪E(σs−1) as a function of s.

Lemma E.3. For every 1 ≤ s < `′, h((E(σ∗)∩Es+1)∪E(σs)) ≥ h((E(σ∗)∩Es)∪E(σs−1))− 2din ·

h(es | σs−1).

Proof. Recall that, for every 1 ≤ s ≤ `′, Es contains the arcs of E whose end point is not in σs−1.

This definition implies that Es+1 ⊆ Es because σs−1 is a prefix of σs. In contrast, since σs contains

at most two vertices that do not appear in σs−1 and each one of these vertices can be the end point

of at most din arcs, we also get |Es \ Es+1| ≤ 2din.

Using these observations and the submodularity of h, we can now derive the following inequality.

h(E(σ∗) ∩ Es | E(σs−1))− h(E(σ∗) ∩ Es+1 | E(σs−1)) ≤
∑

e∈E(σ∗)∩(Es\Es+1)

h(e | E(σs−1))

≤
∑

e∈E(σ∗)∩(Es\Es+1)

h(es | E(σs−1)) = |E(σ∗) ∩ (Es \ Es+1)| · h(es | E(σs−1))

≤ |Es \ Es+1| · h(es | E(σs−1)) ≤ 2din · h(es | E(σs−1)) ,

where the second inequality follows from the definition of es which guarantees that it maximizes

h(es | E(σs−1)) among all the edges of Es.

It now remains to observe that

h((E(σ∗) ∩ Es) ∪ E(σs−1))− h((E(σ∗) ∩ Es+1) ∪ E(σs))

≤ h((E(σ∗) ∩ Es) ∪ E(σs−1))− h((E(σ∗) ∩ Es+1) ∪ E(σs−1))

= h(E(σ∗) ∩ Es | E(σs−1))− h(E(σ∗) ∩ Es+1 | E(σs−1)) ≤ 2din · h(es | E(σs−1)) ,
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where the first inequality follows from the monotonicity of h since the fact that σs−1 is a prefix of

σs implies E(σs−1) ⊆ E(σs).

We are now ready to combine all the above claims into a single lemma.

Lemma E.4. For every 1 ≤ s ≤ `, the following two inequalities hold:

• h((E(σ∗) ∩ Es) ∪ E(σs−1)) ≥ f(σ∗)− 2din · f(σs−1).

• f(σs)− f(σs−1) ≥ f(σ∗)−2din·[f(σs−1)−f(σ0)]−f(σs−1)
dink

≥ f(σ∗)−(2din+1)·f(σs−1)
dink

.

Moreover, the first inequality holds also for s = `′.

Proof. Lemma F.8 shows that, for every 1 ≤ t < `′, we have

h((E(σ∗) ∩ Et+1) ∪ E(σt)) ≥ h((E(σ∗) ∩ Et) ∪ E(σt−1))− 2din · h(et | σt−1) .

Adding up this inequality for 1 ≤ t < s gives us

h((E(σ∗) ∩ Es) ∪ E(σs−1)) ≥ h((E(σ∗) ∩ E1) ∪ E(σ0))− 2din ·
s−1∑
t=1

h(et | σt−1)

= f(σ∗)− 2din ·
s−1∑
t=1

h(et | σt−1) ≥ f(σ∗)− 2din ·
s−1∑
t=1

[f(σt)− f(σt−1)]

= f(σ∗)− 2din · [f(σs−1)− f(σ0)] ≥ f(σ∗)− 2din · f(σs−1) .

The first equality follows since the fact that σ0 is empty implies E(σ0) = ∅ and E(σ∗)∩E1 = E(σ∗).

Additionally, the second inequality follows from Observation E.1, and the last inequality follows from

the non-negativity of f . This proves that the first inequality of the lemma holds for every 1 ≤ s ≤ `′.

In the rest of the proof we aim to prove the second inequality, and thus, assume 1 ≤ s ≤ `.

Recall now that es is the edge of Es maximizing h(es | E(σs−1)) and that the size of E(σ∗) ∩ Es ⊆

E(σ∗) is at most dink by Observation E.2. Thus, by the submodularity of h,

h(es | E(σs−1)) ≥
∑
e∈E(σ∗)∩Es h(e | E(σs−1))

|E(σ∗) ∩ Es|
≥ h(E(σ∗) ∩ Es | E(σs−1))

dink

=
h((E(σ∗) ∩ Es) ∪ E(σs−1))− h(E(σs−1))

dink

≥ {f(σ∗)− 2din · [f(σs−1)− f(σ0)]} − f(σs−1)

dink
≥ f(σ∗)− (2din + 1) · f(σs−1)

dink
.

The lemma follows from this inequality since h(es | E(σs−1)) lower bounds f(σs) − f(σs−1) by
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Observation E.1.

Corollary E.5. If 2din +1 < dink, then f(σ`) ≥ f(σ∗)
2din+1 + [1−(2din+1)/(dink)]`

2din+1 · [(2din +1)f(σ0)−f(σ∗)].

Proof. To prove the corollary, we prove by induction the stronger claim that, for every 0 ≤ s ≤ `,

f(σs) ≥
f(σ∗)

2din + 1
+

[1− (2din + 1)/(dink)]s

2din + 1
· [(2din + 1)f(σ0)− f(σ∗)] .

For s = 0 this inequality is true since

f(σ0) =
f(σ∗)

2din + 1
+

1

2din + 1
· [(2din + 1)f(σ0)− f(σ∗)]

=
f(σ∗)

2din + 1
+

[1− (2din + 1)/(dink)]0

2din + 1
· [(2din + 1)f(σ0)− f(σ∗)] .

Assume now that the claim holds for s− 1 ≥ 0, and let us prove it for s. By Lemma E.4,

f(σs) ≥ f(σs−1) +
f(σ∗)− (2din + 1) · f(σs−1)

dink
=

(
1− 2din + 1

dink

)
· f(σs−1) +

f(σ∗)

dink
.

Plugging in the induction hypothesis, we get

f(σs) ≥
(

1− 2din + 1

dink

)
·
{

f(σ∗)

2din + 1
+

[1− (2din + 1)/(dink)]s−1

2din + 1
· [(2din + 1)f(σ0)− f(σ∗)]

}
+
f(σ∗)

dink
=

f(σ∗)

2din + 1
+

[1− (2din + 1)/(dink)]s

2din + 1
· [(2din + 1)f(σ0)− f(σ∗)] .

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. First, we need to consider the case that Algorithm 12 terminates because the

set E becomes empty. In this case E`′ = ∅, which implies

h((E(σ∗) ∩ E`′) ∪ E(σ`′−1)) = h(E(σ`)) = f(σ`).

Using Lemma E.4 for s = `′, this observation implies

f(σ`) ≥ f(σ∗)− 2din · f(σ`)⇒ f(σ`) ≥
f(σ∗)

2din + 1
,

which proves the theorem. Thus, in the rest of the proof we may assume that Algorithm 12 terminates

because σ reaches a size larger than k − 2.
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Consider now the case that 2din + 1 ≥ dink. In this case

f(σ`) ≥ f(σ1) = f(σ0) + [f(σ1)− f(σ0)] ≥ f(σ0) +
f(σ∗)− f(σ0)

dink

≥ f(σ∗)

dink
≥ f(σ∗)

2din + 1
≥ 1− e−(1− 1

k )

2din + 1
· f(σ∗) ,

where the first inequality holds since σ1 is a prefix of σ` and the second inequality follows from

Lemma E.4. Thus, it remains to prove the theorem in the more interesting case of 2din + 1 < dink.

Observe that

[1− (2din + 1)/(dink)]` ≤ e−(2+1/din)·(`/k) .

Plugging this inequality into Corollary E.5 gives

f(σ`) ≥
f(σ∗)

2din + 1
+

[1− (2din + 1)/(dink)]`

2din + 1
· [(2din + 1)f(σ0)− f(σ∗)]

≥ 1− [1− (2din + 1)/(dink)]`

2din + 1
· f(σ∗) ≥ 1− e−(2+1/din)·(`/k)

2din + 1
· f(σ∗) .

At this point we need a lower bound on `. One can note that |σ| starts as 0, increases by at most

2 in each iteration of the loop of Algorithm 12 and ends up with a value of at least k − 1 by our

assumption. Thus, the number ` of iterations must be at least (k − 1)/2. Plugging this observation

into the previous inequality gives

f(σ`) ≥
1− e−(2+1/din)·(1−1/k)/2

2din + 1
· f(σ∗) ≥ 1− e−(1−1/k)

2din + 1
· f(σ∗) .

E.2 Proof of Theorem 5.3

In this section we prove Theorem 5.3, however, before we get into the proof, let us first recall the

theorem itself.

Theorem 5.3. The approximation ratio of Algorithm 14 is at least 1−e−(1− r
k

)

rdin+1 .

In the proof of this theorem we use the same notation that we used in Section F.2.2 for analyzing

Algorithm 12. One can observe that the proofs of Observation E.1 and Observation E.2 are unaffected

by the differences between Algorithm 12 and Algorithm 14, and thus, these two observations can

also be used for towards the proof of Theorem 5.3.

The next lemma is analogous to Lemma F.8.
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Lemma E.6. For every 1 ≤ s < `′, h((E(σ∗)∩ Es+1)∪E(σs)) ≥ h((E(σ∗)∩ Es)∪E(σs−1))− rdin ·

h(es | σs−1).

Proof. Observe that the definition of Es guarantees that Es+1 ⊆ Es, for every 1 ≤ s < `′, because

σs−1 is a prefix of σs. In contrast, every vertex u that appears in σs but not in σs−1 can be

responsible for at most din arcs of Es \ Es+1 because u can be responsible for excluding an arc from

Es+1 only if u is a non-first vertex of the arc. Since σs contains at most r vertices that do not appear

in σs−1, this implies |Es \ Es+1| ≤ rdin.

Using these observations and the submodularity of h, we can now derive the following inequality.

h(E(σ∗) ∩ Es | E(σs−1))− h(E(σ∗) ∩ Es+1 | E(σs−1)) ≤
∑

e∈E(σ∗)∩(Es\Ei+1)

h(e | E(σs−1))

≤
∑

e∈E(σ∗)∩(Es\Ei+1)

h(es | E(σs−1)) = |E(σ∗) ∩ (Es \ Es+1)| · h(es | E(σs−1))

≤ |Es \ Es+1| · h(es | E(σs−1)) ≤ rdin · h(es | E(σs−1)) ,

where the second inequality follows from the definition of es which guarantees that it maximizes

h(es | E(σs−1)) among all the edges of Es.

It now remains to observe that

h((E(σ∗) ∩ Es) ∪ E(σs−1))− h((E(σ∗) ∩ Es+1) ∪ E(σs))

≤ h((E(σ∗) ∩ Es) ∪ E(σs−1))− h((E(σ∗) ∩ Es+1) ∪ E(σs−1))

= h(E(σ∗) ∩ Es | E(σs−1))− h(E(σ∗) ∩ Es+1 | E(σs−1)) ≤ rdin · h(es | E(σs−1)) ,

where the first inequality follows from the monotonicity of h since the fact that σs−1 is a prefix of

σs implies E(σs−1) ⊆ E(σs).

We are now ready to prove the following analog of Lemma E.4.

Lemma E.7. For every 1 ≤ s ≤ `, the following two inequalities hold:

• h((E(σ∗) ∩ Es) ∪ E(σs−1)) ≥ f(σ∗)− rdin · f(σs−1).

• f(σs)− f(σs−1) ≥ f(σ∗)−rdin·[f(σs−1)−f(σ0)]−f(σs−1)
dink

≥ f(σ∗)−(rdin+1)·f(σs−1)
dink

.

Moreover, the first inequality holds also for s = `′.
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Proof. Lemma E.6 shows that, for every 1 ≤ t < `′, we have

h((E(σ∗) ∩ Et+1) ∪ E(σt)) ≥ h((E(σ∗) ∩ Et) ∪ E(σt−1))− rdin · h(et | σt−1) .

Adding up this inequality for 1 ≤ t < s gives us

h((E(σ∗) ∩ Es) ∪ E(σs−1)) ≥ h((E(σ∗) ∩ E1) ∪ E(σ0))− rdin ·
s−1∑
t=1

h(es | σs−1)

= f(σ∗)− rdin ·
s−1∑
t=1

h(es | σs−1) ≥ f(σ∗)− rdin ·
s−1∑
t=1

[f(σt)− f(σt−1)]

= f(σ∗)− rdin · [f(σs−1)− f(σ0)] ≥ f(σ∗)− rdin · f(σs−1) .

The first equality follows since the fact that σ0 is empty implies E(σ0) = ∅ and E(σ∗)∩E1 = E(σ∗).

Additionally, the second inequality follows from Observation E.1, and the last inequality follows from

the non-negativity of f . This proves that the first inequality of the lemma holds for every 1 ≤ s ≤ `′.

In the rest of the proof we aim to prove the second inequality, and thus, assume 1 ≤ s ≤ `.

Recall now that es is the edge of Es maximizing h(es | E(σs−1)) and that the size of E(σ∗) ∩ Es ⊆

E(σ∗) is at most dink by Observation E.2. Thus, by the submodularity of h,

h(es | E(σs−1)) ≥
∑
e∈E(σ∗)∩Ei h(e | E(σs−1))

|E(σ∗) ∩ Es|
≥ h(E(σ∗) ∩ Es | E(σs−1))

dink

≥ h((E(σ∗) ∩ Es) ∪ E(σs−1))− h(E(σs−1))

dink

≥ {f(σ∗)− rdin · [f(σs−1)− f(σ0)]} − f(σs−1)

dink
≥ f(σ∗)− (rdin + 1) · f(σs−1)

dink
.

The second inequality of the lemma now follows by combining the last inequality with Observa-

tion E.1.

Corollary E.8. If rdin +1 < dink, then f(σ`) ≥ f(σ∗)
rdin+1 + [1−(rdin+1)/(dink)]`

rdin+1 · [(rdin +1)f(σ0)−f(σ∗)].

Proof. To prove the corollary, we prove by induction the stronger claim that, for every 0 ≤ s ≤ `,

f(σs) ≥
f(σ∗)

rdin + 1
+

[1− (rdin + 1)/(dink)]s

2rdin + 1
· [(rdin + 1)f(σ0)− f(σ∗)] .
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For s = 0 this inequality is true since

f(σ0) =
f(σ∗)

rdin + 1
+

1

rdin + 1
· [(rdin + 1)f(σ0)− f(σ∗)]

=
f(σ∗)

rdin + 1
+

[1− (rdin + 1)/(dink)]0

rdin + 1
· [(rdin + 1)f(σ0)− f(σ∗)] .

Assume now that the claim holds for s− 1 ≥ 0, and let us prove it for s. By Lemma E.7,

f(σs) ≥ f(σs−1) +
f(σ∗)− (rdin + 1) · f(σs−1)

dink
=

(
1− rdin + 1

dink

)
· f(σs−1) +

f(σ∗)

dink
.

Plugging in the induction hypothesis, we get

f(σi) ≥
(

1− rdin + 1

dink

)
·
{

f(σ∗)

rdin + 1
+

[1− (rdin + 1)/(dink)]s−1

rdin + 1
· [(rdin + 1)f(σ0)− f(σ∗)]

}
+
f(σ∗)

dink
=

f(σ∗)

rdin + 1
+

[1− (rdin + 1)/(dink)]s

rdin + 1
· [(rdin + 1)f(σ0)− f(σ∗)] .

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. First, we need to consider the case that Algorithm 14 terminates because the

set E becomes empty. In this case E`′ = ∅, which implies

h((E(σ∗) ∩ E`′) ∪ E(σ`′−1)) = h(E(σ`)) = f(σ`).

Using Lemma E.7 for s = `′ = `+ 1, this observation implies

f(σ`) ≥ f(σ∗)− rdin · f(σ`)⇒ f(σ`) ≥
f(σ∗)

rdin + 1
,

which proves the theorem. Thus, in the rest of the proof we may assume that Algorithm 14 termi-

nated because σ reached a size larger than k − r.

Consider now the case that rdin + 1 ≥ dink. In this case

f(σ`) ≥ f(σ1) = f(σ0) + [f(σ1)− f(σ0)] ≥ f(σ0) +
f(σ∗)− f(σ0)

dink

≥ f(σ∗)

dink
≥ f(σ∗)

rdin + 1
≥ 1− e−(1− rk )

rdin + 1
· f(σ∗) ,

where the first inequality holds since σ1 is a prefix of σ` and the second inequality follows from
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Lemma E.7. Thus, it remains to prove the theorem in the more interesting case of rdin + 1 < dink.

Observe that

[1− (rdin + 1)/(dink)]` ≤ e−(r+1/din)·(`/k) .

Plugging this inequality into Corollary E.8 gives

f(σ`) ≥
f(σ∗)

rdin + 1
+

[1− (rdin + 1)/(dink)]`

rdin + 1
· [(rdin + 1)f(σ0)− f(σ∗)]

≥ 1− [1− (rdin + 1)/(dink)]`

rdin + 1
· f(σ∗) ≥ 1− e−(r+1/din)·(`/k)

rdin + 1
· f(σ∗) .

At this point we need a lower bound on `. One can note that |σ| starts as 0, increases by at most

r in each iteration of the loop of Algorithm 14 and ends up with a value of at least k − r + 1 by

our assumption. Thus, the number ` of iterations must be at least (k − r + 1)/r. Plugging this

observation into the previous inequality gives

f(σ`) ≥
1− e−(r+1/din)·(1−(r−1)/k)/r

rdin + 1
· f(σ∗) ≥ 1− e−(1−r/k)

rdin + 1
· f(σ∗) .

Appendix F. Adaptive Sequence Submodularity Appendix

F.1 Table of Notations

Table 6

V Ground set of elements.

e ∈ V An individual element from V .

φ A realization, i.e., a function from elements to states.

ψ A partial realization to encoding the current set of observations.

dom(ψ) Domain of a partial realization ψ is defined as dom(ψ) = {e : ∃o .s.t. (o, e) ∈ ψ}.
Φ,Ψ A random realization and a random partial realization, respectively.

∼ For a realization φ and a partial realization ψ: φ ∼ ψ means ψ(e) = φ(e) for all
e ∈ dom(ψ).

p(φ) The probability distribution on realizations.

p(φ | ψ) The conditional distribution on realizations: p(φ | ψ) , Pr[Φ = φ | Φ ∼ ψ].

π A policy, which maps partial realizations to items.

E(π, φ) The set of all edges induced by π when run under realization φ.

h An objective function of type h : 2V ×OV → R≥0.

∆(e | ψ) The conditional expected marginal benefit of e conditioned on ψ.

k Budget on the number of selected items.
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F.2 Proofs

In this section, we prove Theorems 5.5 and 5.6. Towards this goal, we first state some necessary

definitions and notations, and present a few results regarding weakly adaptive submodular func-

tions.

F.2.1 Weakly Adaptive Sequence Submodular

Notation The random variable Φ denotes a random realization with respect to the distribution

p(Φ = φ) over the items (or equivalently vertices of the graph).5 For a set A, its partial realization

(i.e., items in A and their corresponding states) is shown by ψA = {(e,O(e)) | e ∈ A}, where O(e)

gives the state of e. For a partial realization ψ, we define dom(ψ) = {e : ∃ o s.t. (o, e) ∈ ψ}. We

use ΨA to denote a random partial realization over a set A. Note that the distribution of random

variable ΨA is uniquely defined by the distribution of random variable Φ. A partial realization ψ is

consistent with a realization φ (we write φ ∼ ψ) if they are equal, i.e., they are in the same state,

everywhere in the domain of ψ. For the ease of notation, we define h(ψ) , h(dom(ψ), O(ψ)), where

O(ψ) is the state of items in the realization ψ. We also define havg(A) , EΦ(h(A)) , EΦ[h(ΦA)]

which is the expected utility of set A (and states of its elements) over all possible realizations of

A under the probability distribution p(Φ = φ). We define ∆(e | ψ) = EΦ∼ψ[h(Ψ{e} + ψ) − h(ψ)]

which is the conditional expected marginal benefit of item e conditioned on having observed the

subrealization ψ. Note that the random variable Ψ{e} is the state of item e with respect to the

probability distribution p(Φ = φ | Φ ∼ ψ). Similarly, we define ∆(A | ψ) = EΦ∼ψ[h(ΨA +ψ)−h(ψ)]

which is the expected marginal gain of set A to the partial realization ψ. Assume E(πφ) is the set

of edges induced by the set of items policy π selects under the realization φ. The expected utility

of policy π is defined as favg(π) , havg(E(π)) = EΦ[h(E(πΦ)], where the expectation is taken with

respect to p(Φ = φ). For a list of all the notations used in the section refer to Table 6 in Appendix

F.1.

Next, we restate the definitions for weakly adaptive set submodular and adaptive monotone func-

tions.

Definition 5.1. A function h : 2E × QE → R≥0 is weakly adaptive set submodular with

5. Note that there is a one to one correspondence between a realization φ over the vertices and a realization φE over
the edges.
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parameter γ if for all sets A ⊆ E and for all ψ ⊆ ψ′ we have:

∆(A | ψ′) ≤ 1

γ
·
∑
e∈A

∆(e | ψ).

Definition 5.2. A function h : 2E × QE → R≥0 is adaptive monotone if ∆(e | ψ) ≥ 0 for

all partial realizations ψ. That is, the conditional expected marginal benefit of any element is non-

negative.

Definition 5.1 is the generalization of both weak submodularity Das and Kempe (2011) and adaptive

submodularity Golovin and Krause (2011) concepts.

Next, we state a few useful claims regarding weakly adaptive submodular functions.

First note for all ψ and for every set A ⊆ V \ dom(ψ), from Definition 5.1 and the fact that ψ ⊆ ψ,

we have

∆(A | ψ) ≤ 1

γ
·
∑
e∈A

∆(e | ψ). (23)

Lemma F.1. For all ψ and A ⊆ B ⊆ V \ dom(ψ), we have

∆(B | ψ)−∆(A | ψ) ≤ 1

γ
·
∑

e∈B\A

∆(e | ψ).

Proof. We have

∆(B | ψ)−∆(A | ψ) =
∑

Pr[ΨA = ψ′ | Φ ∼ ψ] ·
∑

Pr[ΨB\A = ψ′′ | Φ ∼ ψ + ψ′]

· (havg(ψ + ψ′ + ψ′′)− havg(ψ + ψ′))

=
∑

Pr[ΨA = ψ′ | Φ ∼ ψ] ·∆(B \A | ψ + ψ′) ≤ 1

γ
·
∑

e∈B\A

∆(e | ψ),

where the inequality is derived from the definition of weakly adaptive set submodular functions (see

Definition 5.1) and the fact that
∑

Pr[ΨA = ψ′ | Φ ∼ ψ] = 1.

Corollary F.2. For all ψ, e∗ = arg maxe∈V ∆(e | ψ) and two random subsets A ⊆ B ⊆ V \ dom(ψ)

142



whose randomness might depend on the realization, we have

E[∆(B | ψ)−∆(A | ψ) | Φ ∼ ψ] ≤ E[|B \A| | Φ ∼ ψ]

γ
·∆(e∗ | ψ).

Proof. By taking expectation over the guarantee of Lemma F.1, we get

E[∆(B | ψ)−∆(A | ψ) | Φ ∼ ψ] ≤ 1

γ
· E

 ∑
e∈B\A

∆(e | ψ) | Φ ∼ ψ


≤ 1

γ
· E

 ∑
e∈B\A

∆(e∗ | ψ) | Φ ∼ ψ


=

E[|B \A| | Φ ∼ ψ]

γ
·∆(e∗ | ψ),

where the second inequality follows from the fact that e∗ is the element with the largest expected

gain.

The following observation is an immediate consequence of Definition 5.2.

Observation F.3. For any two (possibly random) subsets A ⊆ B ⊆ V , we have

EΦ(h(A)) ≤ EΦ(h(B)).

Lemma F.4. Assume h is adaptive monotone and weakly adaptive set submodular with a parameter

γ with respect to the distribution p(φ), and π is a greedy policy which picks the item with the largest

expected marginal gain at each step, then for all policies π∗ we have

havg(π) ≥
(

1− e−1/γ
)
· havg(π∗).

Proof. The proof of this lemma follows the same line of argument as the proof of (Golovin and

Krause, 2011, Theroem 5).

F.2.2 Proof of Theorem 5.5

In this section, we first restate Theorem 5.5 and then prove it.

Theorem 5.5. For adaptive monotone and weakly adaptive sequence submodular function f , the
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Adaptive Sequence Greedy policy π represented by Algorithm 15 achieves

favg(π) ≥ γ

2din + γ
· favg(π∗),

where γ is the weakly adaptive submodularity parameter, π∗ is the policy with the highest expected

value and din is the largest in-degree of the input graph G.

We assume the function h is weakly adaptive set submodular (with a parameter γ) and monotone

adaptive submodular. Furthermore, we assume π∗ is the optimal policy. It means π∗ maximizes the

expected gain over the distribution Φ.

Let ` = dk/2e. For every 0 ≤ s ≤ `, let πs be the set of items picked by the greedy policy π after

s iterations (if the algorithm does not make that many iterations because the set E became empty

at some earlier point, then we assume for the sake of the proof that the algorithm continues to

make dummy iterations after the point in which E becomes empty, and in the dummy iterations

it picks no items). The observed partial realization of edges after s iterations of the algorithm is

represented by ψs. The random variable representing ψs is Ψs. We define favg(πs) , havg(E(πs)),

i.e., it is the expected value of items picked by the greedy policy π after s iterations. For every

1 ≤ s ≤ `, we also denote by es and Es the values assigned to the variables eij and E , respectively,

at iteration number s. Finally, we assume es is a dummy arc with zero marginal contribution to h

if iteration number s is a dummy iteration (i.e., the algorithm makes in reality less than s iterations).

Observation F.5. For every 0 ≤ s1 ≤ s2 ≤ `, conditioned on the partial realization ψs1
, i.e., the

policy has already made its first s1 iterations, we have Es1
⊇ Es2

and E(πs1
) ⊆ E(πs2

).

Proof. Both properties guaranteed by the observation follow from the fact that: for all possible

realization φ ∼ ψs1
, we have that πs1

is a (possibly trivial) prefix of πs2
.

Lemma F.6. For every 1 ≤ s ≤ `, favg(πs)− favg(πs−1) ≥ EΨs−1
[∆(es | Ψs−1)].

Proof. Consider a fixed sub-realization ψs−1. If es is a dummy arc, then πs = πs−1, and the

observation is trivial. Otherwise, notice that the membership of es in Es−1 guarantees that it

does not belong to E(πs−1) = dom(ψs−1), but does belong to E(σs). Together with the fact that

E(πs−1) ⊆ E(πs) by Observation F.5, we get E(πs−1) + es ⊆ E(πs); which implies, by the adaptive
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monotonicity of h,

favg(πs)− f(πs−1) = EΦ∼ψs−1
[favg(πs)]− h(ψs−1)

≥ EΦ∼ψs−1
[h(ψs−1 + es)]− h(ψs−1)

= ∆(es | ψs−1).

Note that we condition on the fact that the first s−1 steps of the policy π are performed, therefore we

have favg(πs−1) = h(ψs−1). By taking expectation over all the possible realizations of the random

variable Ψs−1 the lemma is proven.

Lemma F.7. Conditioned on any arbitrary partial realization ψ, we have EΦ∼ψ[|E(π∗)|] ≤ (k−1)din.

Proof. The optimal policy under each realization of the random variable Φ chooses at most k items.

Each one of these k items (except the first one) will have at most din incoming edges. Therefore,

the expected number of edges is at most (k − 1)din.

Lemma F.8. For every 1 ≤ s ≤ `, we have

EΦ[h((E(π∗) ∩ Es−1) ∪ E(πs−1))] ≤

EΦ[h((E(π∗) ∩ Es) ∪ E(πs))] +
1

γ
· EΦ[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | E(πs−1))].

Note that the expectation is taken over all the possible realizations of the random variable Φ.

Proof. The lemma follows by combining the two inequalities of Equation 24 and Equation 25.

EΦ[∆(E(π∗) ∩ Es−1 | E(πs−1))]− EΦ[∆(E(π∗) ∩ Es | E(πs−1))] (24)

=
∑

Pr[Ψs−1 = ψs−1] ·
[
EΦ∼ψs−1

[∆(E(π∗) ∩ Es−1 | ψs−1)−∆(E(π∗) ∩ Es | ψs−1)]
]

(a)

≤ 1

γ

∑
Pr[Ψs−1 = ψs−1] · EΦ∼ψs−1

[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | ψs−1)]

=
1

γ
· EΦ[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | E(πs−1))].

To see why inequality (a) is true, note that for every given sub realization ψs−1 we have: (i) if es is

a dummy edge, then (E(π∗) ∩ Es−1) ∪ E(πs−1) = (E(π∗) ∩ Es) ∪ E(πs), which makes (a) trivial, or

(ii) when es is not dummy, (a) results from Corollary F.2.
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EΦ[h((E(π∗) ∩ Es−1) ∪ E(πs−1))]− EΦ[h((E(π∗) ∩ Es) ∪ E(πs))] (25)

≤ EΦ[h((E(π∗) ∩ Es−1) ∪ E(πs−1))]− EΦ[h((E(π∗) ∩ Es) ∪ E(πs−1))])

=
∑

Pr[Ψs−1 = ψs−1] · EΦ∼ψs−1
[h((E(π∗) ∩ Es−1) ∪ ψs−1)− h(E(π∗) ∩ Es) ∪ ψs−1)]

=
∑

Pr[Ψs−1 = ψs−1] · EΦ∼ψs−1
[∆((E(π∗) ∩ Es−1) | ψs−1)−∆(E(π∗) ∩ Es) | ψs−1)]

= EΦ[∆(E(π∗) ∩ Es−1 | E(πs−1))]− EΦ[∆(E(π∗) ∩ Es | E(πs−1))].

Lemma F.9. EΦ[h((E(π∗) ∩ E`) ∪ E(π`))]] ≤
1

γ
· EΦ[|E(π∗) ∩ E`| ·∆(e` | Ψ`−1)] + favg(π`).

Proof. We have

EΦ[h((E(π∗) ∩ E`) ∪ E(π`))− h(π`)]

=
∑

Pr[Ψ` = ψ`] · EΦ∼ψ` [h(E(π∗) ∩ E`) ∪ ψ`)− h(ψ`)]

(a)

≤ 1

γ

∑
Pr[Ψ` = ψ`] · EΦ∼ψ` [|E(π∗) ∩ E`| ·∆(e` | ψ`−1)] =

1

γ
· EΦ[|E(π∗) ∩ E`| ·∆(e` | Ψ`−1)].

To see why inequality (a) is true, note that for every given sub realization ψ` we have: (i) if e` is a

dummy edge, then E` = ∅, which makes inequality (a) trivial, and (ii) if e` is not a dummy edge

then we conclude inequality (a) from the definition of weakly adaptive set submodular functions (see

Definition 5.1).

The lemma follows by combining this inequality with the observation that favg(π`) = EΦ[h(π`)].

To combine the last two lemmata, we need the following observation.

Observation F.10. For every 2 ≤ s ≤ `, EΦ[∆(es−1 | E(πs−2))] ≥ γ · EΦ[∆(es | E(πs−1))].

We are now ready to prove Theorem 5.5.

Proof of Theorem 5.5. Combining Lemmata F.8 and F.9, we get

favg(π
∗)− favg(π`) =EΦ[h((E(π∗) ∩ E1) ∪ E(π0))]− favg(π`)

≤ 1

γ
·
∑̀
s=1

EΦ[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | E(πs−1))]

+ EΦ[∆((E(π∗) ∩ Es) ∪ E(πs))]− favg(π`)
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≤ 1

γ

∑̀
s=1

EΦ[|E(π∗) ∩ (Es−1 \ Es)| ·∆(es | E(πs−1))]

+
1

γ
· EΦ[|E(π∗) ∩ E`| ·∆(e` | Ψ`−1)]

=
1

γ
·
`−1∑
s=1

EΦ[|E(π∗) ∩ (E0 \ Es)| · [∆(es | E(πs−1))−∆(es+1 | E(πs))]]

+
1

γ
· EΦ[|E(π∗) ∩ E0| ·∆(e` | E(π`−1))], (26)

where the first equality holds since the fact that σ0 is an empty sequence implies E(σ0) = ∅ and

E0 = E, and the second equality holds since Es ⊆ Es−1 by Observation F.5 for every 1 ≤ s ≤ `.

We now observe that for every 1 ≤ s ≤ `, πs contains at most 2s vertices. Since each one of these

vertices can be the end point of at most din arcs, we get

|E(σ∗) ∩ (E0 \ Es)| ≤ |E0 \ Es| ≤ 2sdin

Additionally, by Lemma F.7,

|E(σ∗) ∩ E0| ≤ |E(σ∗)| ≤ (k − 1)din ≤ 2`din.

Plugging the last two inequalities into Inequality (26) yields

favg(π
∗)− favg(π`) ≤

`−1∑
s=1

2sdin

γ
· EΦ[∆(es | E(πs−1))−∆(es+1 | E(πs))]+

2`din

γ
· EΦ[∆(e` | E(σ`−1))]

=
∑̀
s=1

2din

γ
· EΦ[∆(es | E(πs−1))] ≤ 2din

γ
·
∑̀
s=1

[favg(πs)− favg(πs−1)]

=
2din

γ
· [favg(π`)− favg(π0)] ≤ 2din

γ
· favg(π`),

where the second inequality holds due to Lemma F.6 and the last inequality follows from the non-

negativity of f . Rearranging the last inequality, we get

favg(π`) ≥
γ

2din + γ
· favg(π∗),

which implies the theorem since favg(π`) is a lower bound on the expected value of the output

sequence of Algorithm 15 because σ` is always a prefix of this sequence.

147



F.2.3 Proof of Theorem 5.6

In this section, we first restate and then prove Theorem 5.6 which guarantees the performance of

our proposed policy applied to hypergraphs.

Theorem 5.6. For adaptive monotone and weakly adaptive sequence submodular function f , the

policy π′ represented by Algorithm 20 achieves

favg(π
′) ≥ γ

rdin + γ
· favg(π∗),

where γ is the weakly adaptive submodularity parameter, π∗ is the policy with the highest expected

value and r is the size of the largest hyperedge in the input hypergraph.

Algorithm 20 Adaptive Hyper Sequence Greedy

1: Require: Directed hypergraph H(V,E) , γ-adaptive and adaptive-monotone function h : 2E ×
OE → R≥0 and cardinality parameter k

2: Let σ ← ()
3: while |σ| ≤ k − r do
4: E = {e ∈ E | σ ∩ V (e) is a prefix of e}
5: if E 6= ∅ then
6: e∗ = arg maxe∈E ∆(e | ψσ)
7: for every v ∈ e∗ in order do
8: if v /∈ σ then
9: σ = σ ⊕ v

10: Identify the state of all edges in E ′ = {e ∈ E | all elements of V (e) belong to σ and appear
in the same order}

11: ψσ = ψE′

12: else
13: break
14: Return σ

In the proof of this theorem we use the same notation that we used in Section F.2.2 for analyzing Al-

gorithm 15, with the exception of Es, which is now defined as Es = {e ∈ E | σs∩V (e) is a prefix of e},

and `, which is now defined as bk/rc.

The following lemma is a counterpart of Lemma F.7.

Lemma F.11. |E(σ∗)| ≤ (k − r + 1)din.

Proof. For a realization φ, every arc of π∗ must end at a vertex of π∗ which is not one of the first

r− 1 vertices. The observation follows since π∗ contains at most k− r+ 1 vertices of this kind, and

at most din arcs can end at each one of them.
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One can observe that the proofs of all the other observations and lemmata of Section F.2.2 are

unaffected by the differences between Algorithm 15 and Algorithm 20, and thus, these observations

and lemmata can be used towards the proof of Theorem 5.6.

Proof of Theorem 5.6. The proof of this theorem is identical to the proof of Theorem 5.5 up to two

changes. First, instead of getting an upper bound of 2sdin on |E0 \ Es| for every 1 ≤ s ≤ `, we now

get an upper bound of rsdin on this expression because σs might contain up to rs vertices rather

than only 2s. Second, instead of getting an upper bound of 2`din on |E(σ∗)|, we now use Lemma

F.11 to get an upper bound of (k − r + 1)din ≤ r`din on this expression.

F.2.4 Proof of Theorem 5.7

The approximability of the sequence submodular maximization, as a generalization of the densest k

subgraph problem (DkS) (Kortsarz and Peleg, 1993), is an open theoretical question with important

implications. In this section, we prove Theorem 5.7.

In the DkS problem the goal is to find a subgraph on exactly k vertices that contains the maximum

number of edges. DkS as a generalization of the k-clique problem is NP-hard and the best polyno-

mial algorithm for DkS achieves a n1/4+ε approximation factor6 for an arbitrary ε > 0 (Bhaskara

et al., 2010). Furthermore, there exists no polynomial time algorithm that approximates DkS within

an O(n1/(log logn)c) factor unless 3-SAT has a subexponential time algorithm Manurangsi (2017).

Lemma F.12. Any algorithm with an α approximation factor to the sequence submodular max-

imization problem solves the densest k subgraph problem (DkS) with at most an α approximation

factor.

Proof. To prove this lemma, we show that for each instance of DkS over a directed graph G(V,E)

we can build an instance of the sequence submodular maximization problem over a directed graph

H(V,E′) such that solving the latter problem also solves the former one. We assume all vertices

and edges have a single state. Therefore, the problem translates to the non-adaptive sequence

submodular scenario.

Graph H is built from graph G by replacing each edge e = (u, v) in E by two directed edges (u, v)

and (v, u). We define h(S) = |S|, which is linear and therefore submodular. Finally, the sequence

6. Note that in this section we define the approximation factor as the ratio of the the optimal solution to the solution
provided by the algorithm.
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submodular function f is defined as f(σ) = h(E(σ)) = |E(σ)|. It remains to show that for every

subset of vertices S the value of function f for an arbitrary permutation σS of S is equivalent to

the size of subgraph GS induced by those vertices in graph G. This is true because for every edge

(u, v) ∈ GS we have two corresponding edges in the directed graph H and based on the order of u

and v exactly one of them is considered in E(σS).

As a result, maximizing the function f with a cardinality constraint k is equivalent to solving the

DkS problem. Thus, any algorithm with an α approximation factor to the sequence submodular

maximization problem solves DkS with at least an α approximation factor.

Manurangsi (2017) showed that any algorithm with an O(n1/(log logn)c) approximation factor to the

DkS problem (for a constant c > 0) would prove the exponential time hypothesis is false. Next, we

directly state the result of Manurangsi (2017).

Theorem F.13 (Manurangsi (2017), Theorem 1). There is a constant c > 0 such that, assuming

the exponential time hypothesis, no polynomial-time algorithm can, given a graph G on n vertices

and a positive integer k ≤ n, distinguish between the following two cases:

• There exist k vertices of G that induce a k-clique.

• Every k-subgraph of G has density at most n−1/(log logn)c .

To sum-up, Theorem 5.7 is proved from the combination of the two following facts:

1. If there is an algorithm with an approximation within a n1/(log logn)c factor to the sequence

submodular maximization problem, from the result of Lemma F.11, we know that it would

solve the DkS problem with at most the same factor.

2. If there is an algorithm with a n1/(log logn)c approximation factor to the DkS problem, it could

distinguish the two cases of Theorem F.13 and would prove the exponential time hypothesis

to be false.

F.3 Additional Experimental Details

F.3.1 Amazon Product Recommendation

In this application, we consider the task of recommending products to users. In particular, we use

the Amazon Video Games review dataset (McAuley et al., 2015), which contains 10,672 products,
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24,303 users, and 231,780 confirmed purchases. We furthered focused on the products that had been

purchased at least 50 times each, leaving us with a total of 958 unique products.

Although we are using a different dataset, the experimental set-up closely follows that of the movie

recommendation task in Tschiatschek et al. (2017) and Mitrovic et al. (2018a). We first group and

sort all the data so that each user u has an associated sequence σu of products that they have

purchased. These user sequences are then randomly partitioned into a training set and a testing set

using a 80/20 split. Note that we 5 trials to average our results.

Using the training set, we build a graph G = (V,E), where V is the set of all products and E is

the set of edges between these products. Each product i ∈ V has a self-loop (i, i), where the weight

(denoted wii) is the fraction of users in the training set that purchased product vi. Similarly, for each

edge (i, j), the corresponding weight wij is defined to be the conditional probability of purchasing

product j given that the user has previously purchased product i.

For each sequence σu in the test set, we are given the first g products that user u purchased, and then

we want to predict the next k products that she will purchase. After each product is recommended

to the user, the state of the product is revealed to be 1 if the user has indeed purchased that product,

and 0 otherwise. At the start, the g given products are known to be in state 1, while the states of

the remaining products are initially unknown.

As described in Section 5.2.2, the states of the edges are determined by the states of the nodes.

In this case, the state of each edge (i, j) is equal to the state of product i. The intuitive idea is

that edge (i, j) encodes the value of purchasing product j after already having purchased product

i. Therefore, if the user has definitely purchased product i (i.e., product i is in state 1), then they

should receive the full value of wij . On the other hand, if she has definitely not purchased product

i (i.e., product i is in state 0), then edge (i, j) provides no value. Lastly, if the state of product i is

unknown, then the expected gain of edge (i, j) is discounted by wii, the value of the self-loop on i,

which can be viewed as a simple estimate for the probability of the user purchasing product i. See

Figure 20a for a small example.

We use a probabilistic coverage utility function as our monotone adaptive submodular function h.

Mathematically,

h(E1) =
∑
j∈V

[
1−

∏
(i,j)∈E1

(1− wij)
]
,

where E1 ⊆ E is the subset of edges that are in state 1.
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F.3.2 Wikipedia Link Prediction

We use the Wikispeedia dataset (West et al., 2009), which consists of 51,138 completed search paths

on a condensed version of Wikipedia that contains 4,604 pages and 119,882 links between them.

We further condense the dataset to include only articles that have been visited at least 100 times,

leaving us with 619 unique pages and 7,399 completed search paths.

One natural idea for scoring each algorithm would be to look at the length of the shortest path

between the predicted target and the true target. However, the problem with this metric is that all

the popular pages have relatively short paths to most potential targets (primarily since they have

so many available links to begin with). Hence, under this scoring, just choosing a popular page like

“Earth” would be competitive with many more involved algorithms.

Instead, we define a measure we call the Relevance Distance. The relevance distance of a page i to

a target page j is calculated by taking the average shortest path length to j across all neighboring

pages of i. A lower distance indicates a higher relevance. For example, if our target page is Com-

puter Science, both Earth → Earth Science → Computer Science and University → Education →

Computer Science have a shortest path of length 2. However, the relevance distance of Earth to

Computer Science is 2.68, while the relevance distance of University to Computer Science is 2.41,

which fits better with the intuition that University is logically closer to Computer Science.

F.4 Deep Learning Baseline Details

F.4.1 Feed Forward Neural Network

For both experiments, the input to the Feed Forward Neural Network is a size |V | vector X. That

is, there is one input for each item in the ground set. In the Amazon product recommendation task

in Section 5.2.4, Xi = 1 if the user is known to have purchased product i and 0 otherwise. Similarly,

for the Wikipedia link prediction task in Section 5.2.5, Xi = 1 if the user is known to have visited

page i and 0 otherwise.

The output in both cases is a size |V | soft-maxed vector Y . In Section 5.2.4, Yi can be viewed as

the probability that product i will be the user’s next purchase. In Section 5.2.5, Yi can be viewed

as the probability that user will visit page i next.

For the Amazon product recommendation task in Section 5.2.4, each user u in the training set has

an associated sequence σu of products she purchased. Each such sequence was split into |σu| − 2
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training points by taking the first g products as input and the (g + 1)-th product as the output for

g = 1, . . . , |σu| − 1. For each user u in the testing set, we would take the first g = 4 products she

purchased and encode them in the vector X as described above. We would then input this vector

into our trained network and output the vector Y . In the non-adaptive case we cannot get any

feedback from the user, so we simply output the products corresponding to the k highest values in

Y .

In the adaptive case, we would look at the largest value Yj in our output vector and output this

as our first recommendation. We then check if the corresponding product appeared somewhere

later in the user’s sequence σu. If yes, then we would update our input X so that Xj = 1 and

re-run the network to get our next recommendation. If not, we would simply use the next highest

value in Yj as our next recommendation (since the input doesn’t change). This was repeated for k

recommendations. This is supposed to mimic interaction with the user where we would recommend

a product, and then see whether or not the user actually purchases this product. Note that we only

considered values Yj such that Xj = 0 because we did not want to recommend products that we

knew the user had already purchased.

The main difference for the Wikipedia task in Section 5.2.5 is that, in the testing phase, we cannot

simply output the top k values in Y as we did above because they likely will not constitute a valid

path. Instead, we only have an adaptive version that is similar to what was described above. We

find the highest value Yj such that Xj = 0 (i.e. the user had not already been to this page) and a

link to page j actually exists from our current page. We output this page j as our recommendation

for the user’s next page. We then check if the user actually visited our predicted page j at some

point in their sequence of pages. If yes, we would update X so that Xj = 1 and re-run the network.

If not we would look to the next highest value in the output Y . This was repeated for k guesses.

Note that if we reached the true target page, we would stop making guesses.

In terms of architecture, we used a single hidden layer of 256 nodes with ReLU activations. We use

a batch size of 1024 at first and then go down to a batch size of 32 when we are in the low data

regime (i.e. only using 1% of the available training data). We used an 80/20 training/validation

split to guide our early stopping criterion during training (with minimum improvement of 0.01 and

patience of 1). We used categorical cross-entropy as our loss function.
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F.4.2 LSTM

The main difference between the LSTM and the feed forward network is in the input. The input to

the LSTM is a sequence of one-hot encoded vectors instead of just a single vector. That is, for the

LSTM, each vector in the sequence had exactly one index with value 1.

We experimented with using a long sequence of input vectors and padding with all-zero vectors,

but we found better results using a fixed small sequence length g and then “pushing” the sequence

back when updating. For example, if our current input was a sequence of vectors [v1, v2, v3] and we

wanted to update it with a new vector v4, the updated input would be [v2, v3, v4].

The adaptive LSTM followed the same set-up as the non-adaptive LSTM, but with the same adaptive

update rules described above for the feed-forward neural network.

For all experiments, we used a single hidden layer of 8 LSTM nodes. The other hyperparameters

are all the same as described for the Feed Forward network above, except we start at a batch size

of 256 instead of 1024 (before also going down to a batch size of 32 in the low data regime).

It is worth noting that the datasets that we used in our experiments do not contain any explicit

features about the users or the items, which is why we simply encoded sets/sequences of items as

0-1 vectors in our deep-learning baselines.
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